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Chapter 1

Introduction

The software package PLATSIM provides time and
frequency domain analysis of large-order generic space
platforms. PLATSIM can perform open-loop analysis or
closed-loop analysis with linear or nonlinear control sys-
tem models. PLATSIM’s generic control structure para-
digm permits almost any type of control architecture to
be implemented, for example: attitude control systems
with or without flexible body controls, active isolation
systems, and payload-instrument local control systems.
In the time domain analysis, PLATSIM simulates the
response of the space platform to disturbances and calcu-
lates the jitter and stability values from the response time
histories. In the frequency domain analysis, PLATSIM
calculates frequency response function matrices and pro-
vides the corresponding Bode plots. While PLATSIM
was designed for analyzing space platforms, it only
assumes that it has a finite element model of a structure
that is being excited by force and/or torque inputs. Thus,
any structure (e.g., aeronautical, automotive, structural,
or mechanical) that fits this model can be analyzed by
PLATSIM.

PLATSIM operates in the MATLAB technical
computing environment at MATLAB version 4.2 or 5.0.
MATLAB, a product of The MathWorks, Inc., is a tech-
nical computing environment for high-performance
numeric computation and visualization (ref. 1).
PLATSIM also uses the Control System Toolbox and
SIMULINK, which are additional products of The
MathWorks, Inc. User input to PLATSIM is provided in
the form of MATLAB readable data files and MATLAB
function M-files.

PLATSIM allows the user to maintain a database of
performance measurement outputs on the space platform
and a database of disturbance scenarios. An individual
run of PLATSIM can use all the performance outputs or
a user-selected subset; the user selects one disturbance
scenario for each run. Time domain analysis in
PLATSIM provides on-screen plots of time histories at
user-selected output locations (e.g., instrument bore-
sight) due to user-selected disturbance scenarios, encap-
sulated PostScript files of these plots, tables of jitter-
stability values due to disturbances for user-selected time
window sizes, and files containing the time history data
in either compressed or full form. Frequency domain
analysis in PLATSIM provides on-screen Bode plots,
encapsulated PostScript files of these plots, and files con-
taining the plot data.

PLATSIM includes novel algorithmic features that
provide efficiency in all calculations and, in some cases,

are actually enabling technologies. PLATSIM exploits
the particular form of sparsity (block diagonal with 2 by
2 blocks) of the plant matrices for both time analysis and
frequency domain analysis. A new, original algorithm for
the efficient computation of closed-loop (as well as open-
loop) frequency response functions for large-order sys-
tems has been developed and is implemented within
PLATSIM. This algorithm is an enabling technology for
the analysis of large-order systems, in general, and flexi-
ble space systems, in particular. Furthermore, a novel
and efficient jitter analysis routine which determines jit-
ter and stability values from time simulations in a very
efficient manner (speedup of three to four orders of mag-
nitude in typical examples as compared to the brute force
approach of sweeping minima and maxima) has been
developed for and is incorporated in the PLATSIM
package.

PLATSIM requires the following user inputs: modal
data of the spacecraft as generated by finite element anal-
ysis, damping ratios for flexible modes, information
about control actuators, measurement feedback sensors,
and performance instrument outputs (e.g., boresight mea-
surements), spacecraft disturbance data, and spacecraft
control system model.

The program can be used in either a graphical user
interface (GUI) mode or in a batch mode. The two modes
differ in the way the required and optional flags and
parameters that control execution are defined. In the GUI
mode, the parameters and flags are chosen from pop-up
MATLAB menus with a keypad and a mouse. In the
batch mode, all flags and parameters are defined in
MATLAB command lines, which can be placed in an
ASCII input file.

Although PLATSIM was developed to analyze
generic space platforms, the Earth Observing System
EOS-AM-1 (ref. 2) is used throughout this manual as an
example. Furthermore, several M-files and data files
included in the PLATSIM distribution, some of which
are listed in appendix A, correspond to the EOS-AM-1
spacecraft. These files are the spacecraft control system
defined informscs.m , the instrument types and con-
nectivity data defined ininstdata.m , the finite ele-
ment data defined inomega.mat  and phi.mat , the
damping schedule defined inmkdamp.m, and the
spacecraft disturbance data defined indistdata.m
and its supporting routines. These files can serve as tem-
plates for the user-supplied files for other space platform
applications.

PLATSIM Version 2.0 Enhancements

PLATSIM version 2.0 offers several substantial
improvements in both capabilities and performance over
the initial version 1.0 release. Improvements have been
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made to all aspects of the software package, but the most
significant improvements have been made to core analy-
sis modules (time and frequency domain modules and the
jitter analysis module) and to the graphical user interface.
PLATSIM version 2.0 offers the following new features:

Nonlinear controllers are permitted.

• Seven nonlinear integration routines are available for
controller state propagation.

• The user has direct access of controller states to facil-
tate solution integrity checking.

There is direct interface with SIMULINK controller
models.

• Controller models may be SIMULINK block diagrams
or generic S-functions.

Time-domain memory management has been greatly
enhanced.

• Jitter calculations may be performed on-the-fly as
opposed to postprocessing the entire time history
matrices.

Time-domain analysis has been generalized.

• The control system can be modeled as continuous time
or discrete time.

• Hybrid control system models, consisting of continu-
ous and discrete states, are supported.

• Three methods are available for the propagation plant
states.

Frequency domain analysis has been generalized.

• PLATSIM frequency domain analysis now has the
capability of performing Bode analysis on 16 closed-
loop and 9 open-loop transfer functions.

• The control system may be continuous time or discrete
time.

The graphical user interface has been expanded.

• Complete graphical access to all new time and fre-
quency domain features has been added, for example,
transfer function definition (including input/output
connections), controller implementation methods,
plant integration methods, and others.

• Graphical interface for defining jitter windows is
possible.

• Session file creation for convenient recovery of previ-
ous PLATSIM run-time variable setting can be used.

The manual begins with the description of input files
and variables required by PLATSIM that include the
finite element data, instrument and disturbance descrip-
tion data, and information on the control system (chap-
ter 2). In chapter 3, the methodology and the assumptions
behind the various analysis capabilities by the program
are described, along with a discussion on the execution
control parameters and options, which direct the type and
extent of analysis performed by PLATSIM. Chapter 4
describes the graphical user interface execution mode as
well as the batch execution mode. The various menus,
buttons, and sliders in the graphical user interface that
assign the execution control parameters, define or rede-
fine the structural and controls models, or execute the
program are discussed in detail. The description of the
results or output of the various analyses performed by
PLATSIM, in terms of file names, types, and contents
are provided in chapter 5. These results and outputs
include the time history plots, reduced time history data,
jitter tables, gain and phase plots, and transfer functions.
The run-time diagnostic messages generated by
PLATSIM are listed in chapter 6. Appendixes A and B
provide a listing of typical user-supplied routines
required by the program. Appendix C provides an exam-
ple of the type of routine required for the solution integ-
rity check capability of PLATSIM. Finally, examples of
typical PLATSIM outputs for a time domain analysis
(including jitter analysis) and a frequency domain analy-
sis are provided in appendix D.
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Chapter 2

Input Files

The PLATSIM program requires user-supplied
information from which it can construct the simulation or
analysis model. PLATSIM requires

1. Information on the finite element model of the plant:
modal frequencies, modal damping ratios, and mode
shapes.

2. Information on the control system hardware and
instrument outputs: location, direction, identification
number, and types.

3. Information on disturbances: disturbance time histo-
ries, along with the corresponding location and direc-
tion of actions, and identifying names.

4. Information on the control system mathematical
model: whether the controller is linear or nonlinear;
for linear control systems, the control system matri-
ces; for nonlinear control systems, the nonlinear con-
troller function, along with discrete-state updates and
output vector.

5. Information on user-defined and optional checking
algorithm to be used in the validation of the integra-
tion of the nonlinear controller.

Specifically, PLATSIM requires users to provide the fol-
lowing input files:

• modal frequency data file (omega.dat  or
omega.mat )

• mode shape data file (phi .dat  or phi .mat )

• modal damping schedule file (mkdamp.m)

• instrument data file (instdata .m)

• disturbances data file (distdata .m)

• disturbances files (arbitrarily named M-files)

• control system file (arbitrarily named M-file)

• solution check file (optional) (solchk .m)

Note: These files should be placed in MATLAB’s
directory path.

The remainder of this chapter is devoted to presenting the
details of these input files.

Modal Frequency Data File

The finite element modal frequency data are to be
provided in ASCII file omega.dat , or in MATLAB
binary fileomega.mat .

The ASCII fileomega.dat  contains one frequency
per line:

wherep is the number of modes in the spacecraft model.

The MATLAB binary file omega.mat  should con-
tain a variableomega which is ap × 1 vector containing
the frequencies fromomega.dat  as described above.

The user running PLATSIM in its graphical user
interface (GUI) mode has the opportunity, via the menu
item “Modify Plant Model” under the “Options” button,
to interactively change the plant model’s frequencies.
(See “Program Execution” on page 21.)

Mode Shape Data File

The finite element mode shape data are to be pro-
vided in ASCII filephi .dat , or in MATLAB binary file
phi .mat . Uses to denote the number of grid points at
which mode shape data are to be given in filephi.dat
and label these grid points with grid numbers
N1, N2, ...,Ns. Thenphi.dat  has (p × s) lines in the

format shown in figure 1 on page 4, where Xj
i, Yj

i, and

Zj
i are the modal translations inX, Y, andZ, andΘj

i, Φj
i,

andΨj
i are rotations aboutX, Y, andZ for modei at grid

point Nj. Note that grid points that are not needed to
model instruments, the control system, or disturbances
do not need to be included in filephi.dat . However, if
they are included, care must be taken to ensure that each
mode block contains data for exactly the same grid
points.

Note: If p frequencies are defined inomega.dat ,
modal amplitudes for exactlyp modes should be defined
in phi .dat , and thei-th mode inphi .dat  should cor-
respond to frequencyωi.

The MATLAB binary file phi .mat  should contain
a variablephi , which is a (p × s) by 7 matrix containing
the grid numbers and mode shape displacements and
mode slope displacements fromphi .dat  as described
previously. Users are encouraged to create the binary file
phi .mat  to improve the efficiency of loading model
data.

Modal Damping Schedule File

PLATSIM determines the damping ratios of the flex-
ible spacecraft modes by calling the user-supplied

ω1

ω2

ωp

...
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MATLAB function mkdamp in file mkdamp.m. This
function has the following form:

function [d]=mkdamp(omega)

The input argumentomega is a vector containing
the modal frequenciesω1, ω2, ...,ωp. The user must set
the outputd to a vector containing the corresponding
damping ratios. Appendix A contains a sample file
mkdamp.m for the EOS-AM-1 mission. This file defines
a damping ratio of 0.2 percent for structural modes with
frequencies under 15 Hz, a damping ratio of 0.25 percent
for structural modes with frequencies between 15 Hz and
50 Hz, and a damping ratio of 0.3 percent for structural
modes with frequencies over 50 Hz.

The user running PLATSIM in its graphical user
interface (GUI) mode can use “Modify Plant Model”
under the “Options” menu to change the damping sched-
ule. (See “Program Execution” on page 21.)

Instrument Data File

The data defining the location, direction, type, and
identification of the control system actuators and sensors,
as well as the performance outputs of the system, must be
provided by the user through a user-supplied MATLAB
function instdata  in a file namedinstdata .m. This
function must have the following form:

function [act,mout,pout,instr]= instdata

The following is a description of the user-defined output
parameters in fileinstdata. See appendix A for a
sample fileinstdata .m for the EOS-AM-1 spacecraft.

Instrument data parameteract . Parameteract  is
used to define the location, direction, identification, and
scaling of the control system actuator models. Parameter
act  is a matrix of four rows by as many columns as

Figure 1. Format ofphi .dat .
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necessary to represent the actuators. An example ofact
is given as

act

• The first row ofact  defines the finite element grid
points upon which the actuators are acting.

• The second row ofact  defines the directions at
which the actuators are acting. Direction numbers
are limited to 1 through 6, which correspond to
x-translational, y-translational, z-translational,
x-rotational, y-rotational, andz-rotational direc-
tions, respectively.

• The third row ofact  defines the user-defined pos-
itive identification numbers associated with the
actuators.Note: Each actuator must have a
unique identification number. A single actuator
may require more than a one-column
description.

• The fourth row ofact  defines the weighting-scale
factors associated with the actuators. This factor
allows for distributing the effect of an actuator
within grid points. For example, in theact  exam-
ple, actuator 550 exerts its torque about theY-axis
on two grid points (1211 and 1212), each with a
weighting of 0.5; that is, half the torque generated
by this actuator is applied to grid point 1211 and
the other half to grid point 1212. On the other
hand, actuator 400 exerts its torque about the
Z-axis solely at grid point 827. This factor also
allows for independent scaling of the actuator
output.

• Each column ofact  indicates a contribution of an
actuator (force or torque) to a grid point.Note:
Each actuator must be represented by at least
one column.

• Note: Internally, PLATSIM reorders the actuator
numbers according to the sorted (low-to-high)
identification numbers provided in the third row of
act . In the previous example, PLATSIM consid-
ers actuator 300 as the first actuator, actuator 400
as the second, and actuator 550 as the third and last
actuator.

Instrument data parameter mout . Parameter
mout  is used to define the location, direction, identifica-
tion, scaling, and measurement type of the control system
sensor models. Parametermout  is a matrix of five rows

by as many columns as necessary to represent the mea-
surement outputs. An example ofmout  is given as

mout

• The first row ofmout  defines the finite element
grid points whose responses contribute to the sen-
sor measurements.

• The second row ofmout  defines the direction
associated with the grid point responses that
contribute to the sensor measurements. Direction
numbers are limited to 1 through 6, which
correspond to x-translational, y-translational,
z-translational, x-rotational, y-rotational, and
z-rotational directions, respectively.

• The third row ofmout  defines the user-defined
positive identification numbers associated with the
measurement sensors.Note: Each measurement
sensor must have a unique identification num-
ber. A single sensor may require more than a
one-column description.

• The fourth row ofmout  defines the weighting-
scale factor associated with the sensors. This factor
allows for the contribution of responses from mul-
tiple grid points and directions to a measurement
signal. For example, in themout  example above,
measurement sensor 11 measures a combined
response from rotation about theY-axis at grid
point 111, rotation about theZ-axis at grid point
121, and rotation about theZ-axis at grid point
122, with corresponding weighting factors of 0.5,
0.25, and 0.25. In other words, the measurement
signal of sensor 11 is comprised of half the rota-
tional response (about theY-axis) at grid 111, a
quarter of the rotational response (about theZ-axis)
at grid point 121, and a quarter of the rotational
response (about theZ-axis) at grid point 122. Note
that this weighting-scale factor also allows for
independent scaling of the sensor output.

• The fifth row of mout  defines the measurement
sensor type flag numbers which take the value 0 for
displacement and the value 1 for rate. PLATSIM is
programmed only to handle displacement and rate
sensors as input to the control system; however,
acceleration feedback to the control system can be
implemented by the addition of a judiciously
selected prefiltering of a velocity signal.

=

625 1211 1212 827

4 5 5 6

300 550 550 400

1.0 0.5 0.5 1.0

→
→
→
→

Grid Point No.

Direction No.

Identification No.

Weighting/Scale Factor
=

111 121 122 827

5 6 6 4

11 11 11 120

0.5 0.25 0.25 1.0

0 0 0 1

→
→
→
→
→

Grid Point No.

Direction No.

Identification No.

Weighting/Scale Factor

Type Flag No.
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• Each column ofmout  indicates a contribution of a
grid point (in a specified direction and type) to a
measurement sensor. Note: Each measurement
sensor must be represented by at least one
column.

• Note: Internally, PLATSIM reorders the sensor
numbers according to the sorted (low-to-high)
identification numbers provided in the  third row
of mout . In the previous example, PLATSIM

considers sensor 11 as the first sensor and sensor
120 as the second and last sensor.

Instrument  data parameterpout . Parameter
pout  defines the location, direction, identification,
scaling, and measurement type of the performance output
models. Parameterpout  is a matrix of 5 rows by as
many columns as necessary to represent the performance
outputs. An example ofpout  is given as

pout

• Note: The rows and columns of parameterpout
follow exactly the definitions given for that of
parametermout  with one exception:

The elements in the fifth row ofpout , which
define the performance output types, may also
take values of 2 for acceleration output.

• A weighting factor is included with the prior data.
One use of this weighting factor is for conversion
of units. The performance output which is being
calculated in radians is converted to arc seconds by
multiplying the original weighting factors [1 0.3 1]
by (3600× 180)/π to obtain the fourth row in the
examplepout .

Instrument data parameter instr . Parameter
instr  is a matrix of character strings that provides
names for the performance outputs. The number of rows
in instr  must be equal to the number of performance
outputs, that is, the number ofdistinct entries in the third
row of pout . An example ofinstr , corresponding to
the previous example ofpout , is given as

instr

• Each element ofinstr  is a string consisting of
three or four fields separated from each other by
the vertical bar (|) character.

• The first field is an integer which must correspond
to one of the performance output identification
numbers defined in the third row ofpout .

Note: Every identification number in that row
must be referenced ininstr .

• The second field is one or more alphanumeric
words which provide a unique name for the corre-
sponding performance output. These names are
used in PLATSIM on menu labels and to identify
information in output tables and graphs. They are
also used as parts of file names after embedded
blanks have been replaced by underscores (_).

No characters (except blanks that will be
replaced by underscores) should be used
that would confuse the computer operating
system when used in a file name.

For purposes of determining whether
character strings are distinct, embedded
blanks should be considered the same as
underscores (e.g., “SWIR Pitch” and
“SWIR_Pitch” should be considered the
same).

• The third field is used to name the menu button
under which this instrument will be found when
running PLATSIM in the GUI mode. By using the
same name in the third field of several entries, the
entries will be grouped in a submenu under the
same menu heading. In the example shown previ-
ously, all performance outputs are found under
separate menus labeled: “SWIR”, “VNIR”, and
“TIR”.

• If the optional fourth field is present, PLATSIM
will add it to the second field in generating the ver-
tical legend of time history plots; this can be used,
for example, to give the units of the output.

 =

101 314 567
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Disturbance Data

In the development of the PLATSIM package, it was
assumed that spacecraft simulations and analyses would
be performed for a variety of different disturbances sce-
narios and that each user would maintain a disturbance
database. Easy interactive access to the disturbance data-
base is provided in PLATSIM through a graphical user
interface. The operation and capabilities of the distur-
bance GUI will be described in “Program Execution” on
page 21.

The PLATSIM disturbance data are communicated
to the main package through a user-supplied MATLAB
function distdata  in file distdata .m. This user-
supplied data file provides a complete description of all
spacecraft disturbance scenarios. A spacecraft distur-
bance scenario may consist of several disturbance events.
A disturbance event is a force or torque time history act-
ing on the platform.

 The actual structure of the user disturbance data is
described herein.Note: The specific structure of the
function call has been modified for version 2.0. The
variable tdflag  has been added to the input list.The
first line(s) of filedistdata .m. must have the follow-
ing form:

function [dist,w,period,cnames,dnames,
instdat,mapping]
=distdata(casenum,tdflag)

The data the user returns in the first three parameters
(dist, w, and period ) will depend oncasenum,
while the data returned in the last four parameters
(cnames, dnames, instdat, and mapping )
must be the same, independent of the value ofcasenum .
The data returned indist, w,  and period  will
model the one or more disturbance events of the distur-
bance scenario identified bycasenum .

distdata.m  input

casenum : Used to select a particular disturbance sce-
nario from the user-provided database.

• If PLATSIM callsdistdata  with casenum  = 0,
the user need only return  the  last four parame-
ters (cnames, dnames, instdat, and
mapping ).

• If casenum  is input as a positive integer between
the values of 1 and the number of rows in character
matrix dnames, then all seven parameters should
be returned with the values in the first three corre-
sponding to the disturbance scenario whose name
is in rowcasenum  of dnames. See input variable
tdflag  for exceptions.

• Note: All other values ofcasenum  are invalid.

• For all nonbatch mode operations, the value of
casenum  is set by the disturbance module GUI.
In batch mode, the value ofcasenum  is set in the
batch mode input file.

tdflag : A string variable set to ‘yes’ for time-domain
analysis and to ‘no’ for frequency domain analysis. This
input is a version 2.0 modification which allows users to
avoid unnecessary calculations when frequency domain
analysis is requested.

• When tdflag=’no’ , output variablesw, and
period  do not have to be defined.

distdata.m  outputs

dist : A matrix of four rows by as many columns as
necessary to describe one disturbance event represented
by a column of the matrixw. An example ofdist  is
given as

dist

• The first row ofdist  defines the finite element
grid points upon which the disturbances are acting.

• The second row ofdist  defines the directions at
which the disturbances are acting. Direction num-
bers are  limited to the integers  1 through 6,
which correspond tox-translational,y-translational,
z-translational, x-rotational, y-rotational, and
z-rotational directions, respectively.

• The third row ofdist  defines the user-defined
positive identification numbers associated with the
disturbances.Note: Each disturbance event must
have a unique identification number. A single
disturbance event may require more than a one-
column description.

• The fourth row ofdist  defines the weighting-
scale factor associated with the disturbances. This
factor allows for distributing the effect of a distur-
bance across multiple grid points. For example, in
the dist  illustration, disturbance 200 exerts its
torque about theY-axis on two grid points (121 and
112), with weighting factors of 0.6 and 0.4, respec-
tively. In other words, 60 percent of the torque
exerted by this disturbance is applied to grid point
121, and the other 40 percent is applied to grid
point 112. On the other hand, disturbance 100
exerts its force in the x-direction solely at grid
point 6325. This factor also allows for independent
scaling of the disturbance levels.

=

6325 121 112

1 5 5

100 200 200

1.0 0.6 0.4

→
→
→
→

Grid Point No.

Direction No.
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Weighting/Scale Factor
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• Each column ofdist  indicates a contribution of a
disturbance (force or torque) to a grid point.Note:
Each disturbance must be represented by at
least one column.

• Note: Internally, PLATSIM reorders the distur-
bance numbers according to the sorted (low-to-
high) identification numbers provided in the third
row of dist . In the previous example, PLATSIM
considers disturbance 100 as the first disturbance
event and disturbance 200 as the second and last
disturbance event.

w: A matrix of force and/or torque disturbance time his-
tory profiles. The number of rows inw is the number of
time steps, and the number of columns inw is the number
of disturbance events. This output is optional for fre-
quency domain analysis.

period : A disturbance sampling period, which is also
used as the update rate of the simulation solution. Note
that the same discretization period is used for all events
in a single disturbance scenario. This output is optional
for frequency domain analysis.

cnames:  A string matrix that contains the menu head-
ing labels for the disturbance GUI. The disturbance GUI
will create a pull-down menu button for each row in
cnames . The entries incnames  are used for menu
button labeling only and will not appear in output
documentation.

dnames: A string matrix of disturbance scenario case
names. The rows indnames are used for labeling pull-
down menu items in the disturbance GUI, for labeling
plot figures, and for constructing some PLATSIM output
file names.

• If the PLATSIM user selects a disturbance scenario
from the disturbance GUI that was in row “j” of

dnames, then PLATSIM will call distdata
with casenum  = ‘j ’. The user who wrote
distdata.m  must return the disturbance case
which corresponds to the name in row “j” of
dnames by testingcasenum  and acting on the
value found there.

• Individual disturbance scenarios may be “com-
mented out” by editingdistdata.m  to return
the corresponding row ofdnames with an asterisk
(*) as the first character. The scenario will still
show on the disturbance GUI menu but in a dis-
tinctive grey type, and it will not be selectable.

instdat:  The variablesinstdat  and mapping
together define whichdnames row entries will appear
under a particularcnames  disturbance GUI pull-down
menu button. The vectorinstdat  may be any length,
and its entries may be in any numerical order.

• Note: The entries ininstdat  must correspond
to valid row numbers in the dnames string
matrix.

mapping:  The vectormapping  must contain non-
negative integers and define the partitioning of the
instdat  vector required to map the entries indnames
to the disturbance GUI labels created fromcnames .

• The number of entries in themapping  variable
must equal the number of rows incnames .

• The sum of all entries inmapping  must equal the
number of elements ininstdat . For example, if
instdat  has 30 elements, the MATLAB com-
mandsum(mapping)  must also equal 30.

To illustrate the use of the parameterscnames,
dnames, instdat,  andmapping,  suppose the file
distdata.m  contains these commands:

cnames = str2mat(‘Calibration’,’Tracking’);

dnames = str2mat(‘Solar Array’,’Telescope Cal’,’Antenna Cal’);

dnames = str2mat(dnames,’Telescope Track’,’Antenna Track’,’Antenna Sweep’);

instdat=[1 2 3 1 4 5 6];

mapping=[3 4];

This disturbance database should contain six distur-
bance cases whose names are given in the six lines of the
dnames matrix. When PLATSIM is run in GUI mode,
there will be two buttons on the disturbances menu with
labels Calibration and Tracking . The
Calibration  button will invoke a submenu showing

three entries (mapping(1) = 3 ) which will be taken
from the first three rows of thednames matrix. The first
three entries ofinstdat are [1 2 3] . The
Tracking  button will invoke a submenu showing four
entries (mapping(2) = 4 ) which will be taken from
rows 1, 4, 5, and 6 ofdnames.  The next four entries of
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instdat  are [1 4 5 6] ). Note that the same
disturbance scenario (Solar Array  in this example)
may be included in more than one category.

Control System File

The control system model is accessed by a user-
supplied MATLAB function whose name is in the string
variablenlcon . Depending on the linear or nonlinear
nature of the controller, the user-supplied file may be
either a PLATSIM version 1.0 style, that is, a function
that returns a linear time-invariant state space representa-
tion, or a MATLAB S-function. It should be emphasized
that any linear or nonlinear control system can be repre-
sented, such as a spacecraft attitude control system, a
flexible body control for payload isolation or disturbance
rejection, robotic control, and many others.

Linear and time-invariant  control  system.If the
control system is linear and time invariant, information
on the control system may be provided in one of two
ways:

1. A user-supplied MATLAB function must provide the
matrices that define the control system in state-space
form. This form was required by PLATSIM
version 1.0.
• The first line of this type controller file must have

the form function [ascs ,bscs ,cscs ,dacs ]
=xxyyzz  where the output parametersascs ,
bscs , cscs , anddacs  denote the state matrix,
the input influence matrix, the output influence
matrix, and the feed-through matrix of the control
system, respectively. The name of the controller
file, xxyyzz .m in  this example, is  arbitrary and
is passed to PLATSIM in the execution control
parameter (p. 16 ff) nlcon  as nlcon =
’xxyyzz ’.

• An example file namedformscs .m is given in
appendix A. This file corresponds to a simplified
continuous-time model of the attitude control sys-
tem of the EOS-AM-1 spacecraft.

2. A user-supplied MATLAB S-function may be pro-
vided in one of three ways:
• As a user-supplied MATLAB function which fol-

lows the input/output requirements for S-functions.
Type help sfunc  at the MATLAB prompt for a
complete description of S-functions. An example
of a user-supplied S-function corresponding to a
continuous-time model of the attitude control sys-
tem of the EOS-AM-1 spacecraft is given in
appendix B.

• A user-supplied SIMULINK block diagram. If the
controller exists as a block in a SIMULINK simu-
lation file, a MATLAB S-function may be obtained

by isolating the controller block, by changing its
input and output connections toInports  and
Outports , respectively, and by saving the
updates.

• A user-supplied  C or  FORTRAN  function
which follows the input/output requirements of
S-functions. This function is subsequently con-
verted to a MATLAB “mex” file through the
MATLAB fmex or cmex routines.

Note: Controller file names are arbitrary and can be
modified from default values during program execu-
tion in GUI mode or by setting string parameter
nlcon  in the batch mode.

General assumptions and comments:

1. The linear controller can be either a continuous or a
digital controller. Note that the user declares the con-
tinuous or digital nature of the controller in flags used
during the program execution.

2. It is assumed that the control system is implemented
with a negative feedback connection.

3. It is assumed that the number of control system inputs
is equal to the number of measurement outputs of the
plant. Moreover, there is a straight connection
between the measurement outputs of the plant and the
inputs of the control system.

4. It is assumed that the number of control system out-
puts is equal to or greater than the number of control
inputs to the plant. However, it is assumed that only
control system outputs 1 through the number of plant
inputs are used in the feedback connection. Moreover,
the feedback connection is a straight connection.

Nonlinear or  time variant  control system.If the
controller model is nonlinear or time variant, the neces-
sary information on the control system model is provided
solely by a user-supplied MATLAB S-function which
can be defined in one of three ways, as discussed in the
previous section. An example of a nonlinear control sys-
tem corresponding to a continuous-time model of the
attitude control system of the EOS-AM-1 spacecraft with
reaction wheel stiction is provided in user-supplied
MATLAB S-function stiction.m .

General assumptions and comments:

1. The nonlinear controller may have both continuous
and discrete states. (See S-function definitions.)

2. It is assumed that the control system is implemented
with a negative feedback connection.
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3. It is assumed that the number of control system inputs
is equal to the number of measurement outputs of the
plant. Moreover, there is a straight connection
between the measurement outputs of the plant and the
inputs of the control system.

4. It is assumed that the number of control system out-
puts is equal to or greater than the number of control
inputs to the plant. However, it is assumed that only
control system outputs 1 through the number of plant
inputs are used in the feedback connection. Moreover,
the feedback connection is a straight connection.

Solution Check File

PLATSIM provides the capability to accept or reject
a solution of the nonlinear controller integration through
the use of the user-suppliedsolchk .m input file. By
using this function (given the information on the previ-
ous as well as the current controller states and outputs),
the user can implement a checking of the solution; that is,
if the conditions are not met, the current solution is
rejected, and a smaller recommended step size is pro-
vided by solchk .m. The first line of filesolchk .m
must have the form

function[han]=solchk(z2,u2,z1,u1,h)

where the input parametersz2 , u2 , z1 , u1 , andh are
defined as

z2 : current controller state vector

u2 : current controller output vector

z1 : previous controller state vector

u1 : previous controller output vector

h: integration step size

The output parameterhan  must be set toh, if the
user accepts the solution. If the solution is rejected,han
should contain the recommended new integration step
size, which must be less thanh.

Nonlinear Reaction Wheel Friction

As an example of controller solution checking, con-
sider the problem of nonlinear reaction wheel friction
model (stiction); see figure 2, “Reaction wheel friction
characteristics.”

Nonstiction condition.If the wheel speed is non-
zero, or if the magnitude of the applied torque is greater
than or equal to the stiction torque (static friction torque),
the reactive torque is given as

where Treact denotes the reactive torque (output torque),
Jw represents the inertia of the reaction wheel, and
represents the wheel speed rate.

Stiction condition.If the wheel speed is zero and the
magnitude of applied torque is also less than or equal to
the stiction torque (see fig. 3, “Stiction Condition”), the
reactive torque is given as

The wheel speed would stay at zero until the applied
torque becomes larger then the stiction torque (static fric-
tion torque).

From the previous equations, it is obvious that the
reactive torque is not a continuous function of .
Moreover, it is quite possible that in the process of
advancing the states of the nonlinear control system,
which includes the nonlinear model of the reaction
wheel, an integration step may come about wherein (a) a
zero-crossing of the wheel speed occurs, and (b) the
applied torque at the time of wheel speed zero-crossing isTreact Jwω̇w–=

Figure 2.  Reaction wheel friction characteristics.

Figure 3.  Stiction condition.
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less than or equal to the stiction torque; that is, stiction
has occurred. Thus, the current solution of the integration
is not valid because it did not model the behavior of the
wheel properly by predicting and taking the stiction of
the wheel into account. For example, if from the states
and outputs it is determined that a stiction condition may
have occurred in the vicinity of point “s”, at time
from the previous step, the user may recommend retrying
the integration with a step size of  or some fraction of

.

The solution check is provided to give the user the
capability of altering integration step sizes and state val-
ues to accommodate for discontinuities associated with
some nonlinear devices. A solution check file for the
stiction of reaction wheels in the EOS-AM-1 example is
provided in appendix C. Note that in this example file,
the checks on the zero crossing of the wheel speed and
the friction torque crossing of the applied torques are per-
formed by using linear interpolation between the previ-
ous and current values.

Tε

Tε
Tε
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Chapter 3

Analysis Methodology and Options

PLATSIM includes novel algorithmic features that
provide efficiency of all calculations while constituting
enabling technology in some cases. PLATSIM exploits
the particular form of sparsity of the plant matrices both
in the continuous-time and discrete-time forms, as used
by the time domain analysis and the frequency domain
analysis.

Time Domain

In the time domain analysis, PLATSIM performs a
time simulation of the system by using the user-provided
input data files (which define the model) together with
the execution control parameters selected by the user.
This simulation is optionally followed by a jitter analysis
at the discretion of the user. PLATSIM assumes the fol-
lowing with regard to the plant and control system
models:

1. The plant model is assumed to be linear with model
information provided, as described in chapter 2.

2. The control system model can be either linear or non-
linear. See chapter 2 for the proper input file format.

3. The control system can be modeled in continuous
time or in discrete time.

4. Hybrid control system models, consisting of
continuous-time and discrete-time modules, are also
permitted (in the nonlinear analysis only).

5. The information needed to declare the type of control
system is provided by the user through the linearity
flag (execution control parameterlinflag ) and the
continuous-time flag (execution control parameter
ctflag ). See “Execution Control Parameters” on
page 16.

Once the plant and the control system models have
been defined, PLATSIM allows for two types of time
analysis, linear and nonlinear. The user defines the type
of analysis desired through the implementation flag
(impflag ). See “Execution Control Parameters” on
page 16. PLATSIM takes advantage of the sparsity of the
spacecraft dynamic model system matrix to perform the
linear or nonlinear analysis very efficiently. The reader
should refer to reference 3 for a detailed description of
this sparsity. To take advantage of the sparsity,
PLATSIM assumes that the measurement outputs of the
plant, which are inputs to the control system, are pro-
cessed through a sample and hold analog-to-digital con-
version; this is not a restrictive assumption because it is a
routine procedure in almost all modern practical
applications.

Linear analysis.When using the previously men-
tioned assumption regarding the sample and hold applied
to control inputs, the following applies to linear analysis:

1. If the control system model is discrete time with a
sampling periodtsc , then time simulation is per-
formed through algebraic propagation of the plant and
the controller states, with the output updates occur-
ring at the appropriate times (everytsd  for the plant
and everytsc  for the controller).

2. If the control system model is continuous time, the
controller is still implemented in a discrete-time form.
However, the sampling periodtsc  is chosen auto-
matically by PLATSIM to be small enough; that is,
the controller, for all practical purposes, is continuous
time. Then, time simulation is performed through
algebraic propagation of the plant and the controller
states, with the output updates occurring at the appro-
priate times (everytsd  for the plant and everytsc
for the controller).

• The controller sampling rate is chosen to be one
decade larger than the crossing frequency with the
line 20 dB below the H-infinity norm (of the con-
troller). A 40 dB line is used if the roll-off rate is
less than 20 dB/decade.

• Users may define their own value fortsc  (the
value must be different from the default) to over-
ride its automatic computation. (See “Execution
Control Parameters” on page 16.)

3. The disturbances are interpolated by using linear
interpolation as necessary.

Nonlinear analysis.When using the assumption
regarding the sample and hold applied to control inputs,
the following applies to nonlinear analysis:

1. In the nonlinear analysis, the sampled measurement
outputs are used in one of seven nonlinear integration
routines to propagate the states of the controller.
These routines are as follows:

• Euler integration algorithm

• Second-order Runge-Kutta-Heun integration algo-
rithm (with no error control)

• Second-order Runge-Kutta integration algorithm
(with third-order error control)

• Third-order Runge-Kutta algorithm by Bogacki-
Shampine (with error control)

• Fourth-order Runge-Kutta-Hall integration algo-
rithm (with error control)

• Fifth-order Runge-Kutta integration algorithm by
Fehlberg (with error control)

• Modified Rosenbrock algorithm for stiff systems
(with error control)
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The desired integration routine is selected from the first
element of vectorimthd.  (See “Execution Control
Parameters” on page 16.)

2. Three methods are available for the propagation of the
plant states:

• Zero-order hold

• First-order hold

• Fourth-order Runge-Kutta-Hall integration
algorithm (with error control)

The desired integration routine is selected from the sec-
ond element of vectorimthd.  (See “Execution Control
Parameters” on page 16.)

3. If the control system does not have discrete states, and
if tsc  is not defined by the user, thentsc  is set
equal totsd  by PLATSIM to perform controller state
propagation, as needed.

4. Note: If the control system has discrete states, then
tsc  should be defined by the user.

5. The user is provided with the ability to accept or
reject a solution of the nonlinear controller integration
through the use of the user-suppliedsolchk .m input
file. (See “Solution Check File” on page 10.) The idea
is that given information on the previous, as well as
the current controller states and outputs, the user can
implement a desired checking of the solution; that is,
if the conditions are not met, the current solution is
rejected, and a smaller recommended step size is pro-
vided bysolchk .m.

6. The disturbances are interpolated by using linear
interpolation as necessary.

Jitter analysis. The calculation of jitter by
PLATSIM depends on a user-provided window (time
interval). Each performance output time history is
scanned from beginning to end by moving this window
along it. At each window position in the scan, the maxi-
mum peak-to-peak variation of the portion of the time
history within the window is noted. The biggest of these
is observed as the window moves to scan the entire time
history; this is the measure of jitter in this time history
corresponding to this window.

In typical applications of this technology, time histo-
ries can contain on the order of a hundred thousand to a
million points, and the various windows used in the anal-
ysis (there are typically several of them) can cover any-
where from a few hundred points to the entire time
history. If jitter is calculated in the obvious way (by plac-
ing the window at the beginning of the time history, find-
ing the peak-to-peak variation under the window,
moving it one time step, finding the new peak-to-peak

variation, and repeating until the end of the time history
is reached), then about  references are being
made to points in the time history for each window,
where  is the number of points in the time history and

 is the number of points under the window. The number
of references to time history points can constitute a seri-
ous computational burden.

PLATSIM uses an alternate algorithm (ref. 4), which
has been shown to improve computational speed by three
to four orders of magnitude, when compared with the
obvious way of calculating using typical engineering
problems. A single pass is made through the time history.
If the jitter value is desired for more than one window, all
are done in the same pass. A running tally is kept of jitter
attributable to points which have passed out of the mov-
ing windows, and lists are kept of points still under any
of the windows which might be significant in future parts
of the jitter calculation. This single pass calculation can
be done by making only  references to points
in the time history vector, where  is still the number of
points in the time history,  is the number of windows
for which jitter is being calculated, and  and  are con-
stants which are reasonably small and are independent of
the actual lengths of the windows. Empirical observation
has shown that  is about , which implies that
the time to calculate jitter for each window after the first
is about 30 percent of the time that is taken for the first.

Note: The user should refer to the section “Execution
Control Parameters” at the end of this chapter for a
complete listing and description of time domain and
jitter analyses parameters.

Frequency Domain

In frequency domain analysis, PLATSIM computes
the frequency response function matrix from a set of
user-defined inputs to a set of user-defined outputs for a
set of frequency points selected by the user. A new, orig-
inal algorithm for the efficient computation of closed-
loop (as well as open-loop) frequency response functions
for large-order systems has been developed and is imple-
mented within PLATSIM. This algorithm exploits the
particular form of sparsity (block diagonal with 2 by 2
blocks) of the plant state matrices in both the continuous
and discrete forms used by the frequency analysis, as
well as the sparsity in the control input and disturbances
influence matrices in the continuous form. This algo-
rithm is an enabling technology for the analysis of large-
order systems, in general, and flexible space systems, in
particular. A detailed description of a sample algorithm
is provided in reference 5. Figures 4 and 5 on page 15 are
block diagrams of open-loop and closed-loop systems
with the various input and output types identified.
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PLATSIM frequency domain inputs

1. Ref , Attitude or rate reference commands: valid with
both open-loop and closed-loop analyses

2. D, Disturbances at the plant input: valid with both
open-loop and closed-loop analyses

3. W, External disturbances: valid with both open-loop
and closed-loop analyses

4. M, Measurement noise: valid only with closed-loop
analysis

PLATSIM frequency domain outputs

1. Err , Tracking errors: valid only with closed-loop
analysis

2. U, Control input: valid with both open-loop and
closed-loop analyses

3. Yper , Performance outputs: valid with both open-
loop and closed-loop analyses

4. Y, Measurement outputs: valid with both open-loop
and closed-loop analyses

PLATSIM makes the following assumptions and restric-
tions in frequency domain analysis:

1. Control implementation must be linear (parameter
impflag  set to ‘yes’).

2. Control system may be continuous time or discrete
time.

3. Input or output types cannot be combined; for exam-
ple, input: measurement noise and input: external dis-
turbances cannot be analyzed simultaneously.

Figure 4.  Open-loop block diagram.

Figure 5.  Closed-loop block diagram.
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4. The smallest frequency used in the analysis must not
approach zero because the frequency analysis prob-
lem becomes ill conditioned in the presence of rigid-
body modes (or pure integrators) as frequency
approaches zero.

5. Each flexible mode either must have positive damp-
ing, or its frequency must not be included in the fre-
quency vector used for the analysis.

Execution Control Parameters

There are 38 execution control parameters within
PLATSIM. These are MATLAB work space variables
that are used to define the type, extent, methods, and
options of analysis required by the user, as well as to
control the output of the program. Some of these parame-
ters have meaning to both time and frequency domain

analysis, some only to time domain, and some only to
frequency domain. Most of these parameters can be
defined easily by using an interactive PLATSIM GUI
(chapter 4). Execution control parameters can also be set
by using commands from a prewritten script to run
PLATSIM in the background. (See “Batch Mode” on
page 32.) PLATSIM assigns a default value to all execu-
tion control parameters, with the exception of the
parametercasenum . If PLATSIM is running in GUI
mode,casenum  is set by user responses to the “Distur-
bances” menu. In batch mode,casenum  must be set
before PLATSIM is called. The default values for most
execution control parameters are specified in the user-
changeable filedefaults .m. Users are encouraged to
customizedefaults .m to fit their particular analysis
needs. See appendix A for a listing ofdefaults .m.

Table 1. Specifications for Individual Execution Control Parameters

Name Usage Type Description

casenum both integer This variable is set to the number of the disturbance sce-
nario to be used. PLATSIM will pass this value to user-
supplied MATLAB functiondisdata .m. Can be set from
GUI mode.

clflag both string This flag controls whether closed-loop or open-loop
analysis is performed. For closed-loop analysis, set
clflag ='yes ', and for open-loop analysis, set
clflag ='no '. Can be set from GUI mode.

desint both integer vector Determines which performance outputs will be used. If left
undefined, all will be used. To use, set “desint ” to a vec-
tor of instrument identification numbers. (These numbers
appear in the third row of thepout  matrix returned by user-
supplied MATLAB functioninstdata .) Can be set from
GUI mode.

impflag both string Defines whether linear or nonlinear implementation of the
control system is used. For a nonlinear implementation of
the control system, setimpflag =’no ’. Can be set from
GUI mode. The necessary control system files are automati-
cally created by PLATSIM; that is,

1. If the controller is linear,impflag  is set to ‘yes ’, and
an S-function is provided for the control system, an
equivalent state space representation is created, and
nlcon  is set toformscs .m. A file formscs .mat  is
also created to hold the controller data.

2. If the controller is linear,impflag  is set to ‘yes ’, and
a state space representation is provided for the control
system; no action is taken.

3. If the controller is linear,impflag  is set to ‘no ’, and a
state space representation is provided for the control
system, an equivalent S-function is created, andnlcon
is set toplatc_ *.m, where the asterisk is replaced by
the lowest integer that defines a unique file name in the
current directory.
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Table 1. Continued

Name Usage Type Description

impflag both string 4. If the controller is nonlinear,impflag  is set to ‘no ’,
and an S-function is provided for the control system; no
action is taken.

5. If the controller is nonlinear,impflag  is set to ‘yes ’,
and an S-function is provided for the control system, an
equivalent state space representation is created, and
nlcon  is set toformscs .m. A file formscs .mat  is
also created to hold the controller data.

linflag both string If the control system is linear, setlinflag =’yes ’. For
nonlinear control systems, setlinflag =’no ’. Can be set
from GUI mode.

phold both real scalar A mnemonic forplot hold, phold  is the number of seconds
a time history, Bode plot, or jitter analysis table will remain
on-screen before being cleared for the next plot. See note 1
at the end of table.

pltflag both string In time domain analysis,pltflag =’yes ’ causes reduc-
tion of time history data for plotting and writing of MAT-
file with reduced time histories. In both analyses, causes
plots (time history or Bode) to be displayed on-screen. Dis-
able by settingpltflag =’no ’. Can be set from GUI
mode.

prtflag both string Ifpltflag  is set to ‘yes ’, this causes the encapsulated
PostScript forms of the plots to be written to files. Disable
by settingprtflag =’no ’. Can be set from GUI mode.

nlcon both string The name of the MATLAB M-file which contains the
S-function that describes the linear or nonlinear controller.
Can be set from GUI mode.

runmode both string Determines what interface mode PLATSIM runs in. Set
runmode =’batch ’ before entering theplatsim  com-
mand to run in batch mode. Only the first character ofrun-
mode is significant and may be of either case.

nmode both integer scalar, or
vector

Which structural modes to use in the analysis. The value0
means “all modes”. A positive integern means “modes 1
through n”. A negative integer-n  means “only mode n”. A
MATLAB vector such as [1:6,10,13:16 ] means “use
exactly the mode numbers in the vector”. Can be set from
GUI mode.

tdflag both string For time domain analysis, settdflag =‘yes ’. Set
tdflag =‘no ’ for frequency domain analysis. Can be set
from GUI mode.

tsc both real scalar Parametertsc  defines the controller sampling period. If
the controller is discrete time, the user should provide the
sampling time of the controller (or the default value would
be used). The value oftsc  for a continuous time controller
is based upon the following: if the user has provided a pre-
ferred value, it will be used; otherwise, a sufficiently small
sampling time is automatically computed and used. Can be
set from GUI mode.
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Table 1. Continued

Name Usage Type Description

abstolc time real scalar Absolute error tolerance used in the nonlinear integration of
the controller. See note 1 at end of table.

abstolp time real scalar Absolute error tolerance used in the nonlinear integration of
the plant. See note 1 at end of table.

ctflag both string Ifctflag  is set to ‘yes ’, the controller provided by the
user is assumed to be continuous (no discrete states). If the
controller has any discrete states, then setctflag =’no ’.
Can be set from GUI mode.

Note: PLATSIM assumes that the input to the controller is
discrete (sampled and held for one sampling period). See
“Time Domain” on page 13.

imthd time integer vector Determines the solution techniques used in the propagation
of the controller and plant states. When controller imple-
mentation is nonlinear,impflag  is set to ‘no’. Parameter
imthd  is a 2-element integer vector, with the first element
identifying the solution technique used in the propagation of
the controller states and the second element identifying that
used for the plant. Can be set from GUI mode. The options
for thefirst element ofimthd  are

1. Euler integration algorithm

2. 2nd-order Runge-Kutta-Heun integration algorithm
(with no error control)

3. 2nd-order Runge-Kutta integration algorithm (with 3rd-
order error control)

4. 3rd-order Runge-Kutta algorithm by Bogacki-Shampine
(with error control)

5. 4th-order Runge-Kutta-Hall integration algorithm (with
error control)

6. 5th-order Runge-Kutta integration algorithm by
Fehlberg (with error control)

7. Modified Rosenbrock algorithm for stiff systems (with
error control)

The options for thesecond element ofimthd  are

0. zero-order-hold integration

1. first-order-hold integration

2. fourth-order Runge-Kutta-Hall integration algorithm
(with error control)

jtrflag time string Causes jitter analysis to be performed on time histories. Dis-
able by settingjtrflag =’no ’. Can be set from GUI
mode.

lowmemflag time string Iflowmemflag  is set to ‘yes ’, and time-domain analysis
or jitter analysis is requested, PLATSIM implements a
memory efficient simulation and jitter analysis algorithm
which reduces the required memory drastically, while pay-
ing a slight penalty on computational efficiency. Can be set
from GUI mode.

maxiter time integer scalar Maximum number of iterations allowed for convergence at
each step of the nonlinear integration. See note 1 at end of
table.
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multflag time string Ifmultflag =’no ’, a separate time simulation for each
event in the disturbance scenario is performed. To simulate
the effect of all disturbances simultaneously, setmult-
flag =’yes ’. Can be set from GUI mode.

nplpts time real scalar The parameternplpts is used in reducing the time histo-
ries for plotting. The data points to be plotted are divided
into nplpts  nonoverlapping groups of consecutive points,
the groups containing, as nearly as possible, the same num-
ber of points. See note 1 at end of table.

options time real vector options  is a 3-element vector that defines the most com-
monly used parameters in the nonlinear integration. The
first element defines the relative integration error tolerance,
the second element defines the minimum step size allowed,
and the third defines the maximum step size allowed. Can
be set from GUI mode.

pmflag both string Ifpmflag =’yes ’ a performance meter is shown during
simulation and that indicates what percentage of the calcu-
lation has been completed. Can be set from GUI mode.

saveflag time string To save full, that is, not reduced time histories, setsave-
flag =’yes ’. Can be set from GUI mode.

solchkflag time string solchkflag  is valid only with the nonlinear controller
implementation in time domain analysis. Ifsolchkflag
is set to ‘yes ’, the nonlinear integration solution is checked
against a set of user-defined conditions (provided in a
MATLAB function in file solchk .m; see “Solution Check
File” on page 10); that is, if the conditions are met, the solu-
tion is accepted; otherwise, a smaller integration step is sug-
gested by the user (as the output ofsolchk .m). Can be set
from GUI mode.

tclip time real scalar The parametertclip  is used for clipping the time histo-
ries. If the value entered is not zero, any data point corre-
sponding to a time beforetclip  will be removed; that is, it
will not be used for jitter computation. Units oftclip
must match the units of parameterperiod  returned by
user-supplied MATLAB functiondistdata . This option
is useful in the jitter analysis of steady-state disturbance
sequences. May be set from GUI mode.

window time real vector A vector whose nondecreasing and positive elements define
the time windows to be used in the jitter analysis.window
must be defined if jitter analysis is requested. May be set
from GUI mode.

bfrax frequency string Ifbfrax  is set to ‘yes ’, the Bode plot frequency axis units
are set to rad/sec; otherwise, they are set to Hz. Can be set
from GUI mode.

bmagax frequency string Ifbmagax is set to ‘yes ’, the Bode magnitude plot axis is
presented in decibels; otherwise, it is presented in a loga-
rithmic scale. Can be set from GUI mode.

bodemthd frequency integer vector Determines the types of inputs and outputs for which a
frequency response function is desired.bodemthd  is a
2-element integer vector, with the first element identifying
the type of input and the second identifying the type of out-
put. Can be set from GUI mode. The options for the first
element ofbodemthd  are

1. attitude or rate reference commands (open loop and
closed loop)

Table 1. Continued

Name Usage Type Description
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Table 1. Concluded

Name Usage Type Description

bodemthd frequency integer vector 2. disturbances at the plant input (open loop and closed
loop)

3. external disturbances (open loop and closed loop)

4. measurement noise (closed loop only)

The options for the second element ofbodemthd  are

1. tracking errors (closed loop only)

2. control inputs (open loop and closed loop)

3. performance outputs (open loop and closed loop)

4. measurement outputs (open loop and closed loop)

desinti frequency integer vector Determines which elements from the type selected (see
“Frequency Domain” on page 14) will be used as the inputs
for the frequency response analysis. If undefined, all inputs
will be used. To use, setdesinti  to a vector of identifica-
tion numbers of the desired elements. Can be set from GUI
mode.

desinto frequency integer vector Determines which elements from the type selected (see
“Frequency Domain” on page 14) will be used as the out-
puts for the frequency response analysis. If undefined, all
outputs will be used. To use, setdesinto  to a vector of
identification numbers of the desired elements. Can be set
from GUI mode.

frqflag frequency string Iffrqflag  is set to ‘yes ’, model frequencies and, if
defined, a user-prescribed frequency vector, provided in
MATLAB variable usrfrq , are added to the frequency
vector used in the frequency domain analysis. Can be set
from GUI mode.

il frequency real scalar The smallest frequency at which frequency domain analysis
will be done is 10^il. Can be set from GUI mode.

iu frequency real scalar The largest frequency at which frequency domain analysis
will be done is 10^iu. Can be set from GUI mode.

npts frequency real scalar The number of frequency points at which frequency domain
analysis will be done isnpts . Can be set from GUI mode.

usrfrq frequency real vector usrfrq  is a MATLAB vector which contains the user-
defined frequencies that are also used in the frequency
domain analysis.frqflag  must be set to ‘yes ’ for this
parameter to be used by PLATSIM. Can be set from GUI
mode.

Note 1. To run PLATSIM in GUI mode with a nondefault value for this parameter, it must be set by MATLAB
assignment statement prior to invokingplatsim .
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Chapter 4

Program Execution

Overview

As already stated, PLATSIM operates in the
MATLAB technical computing environment of
MATLAB version 4.2. The MathWorks, Inc. products,
Control System Toolbox and SIMULINK, must also be
available. In order to run PLATSIM, one must first start
MATLAB. Furthermore, MATLAB must have access to
the PLATSIM source code and the user-supplied data
and M-files. Source code access is typically defined by a
startup .m file that sets the MATLAB path variable
automatically on initialization.

GUI Mode

A graphical user interface (GUI) has been developed
for PLATSIM. PLATSIM’s GUI uses MATLAB’s Han-
dle Graphics available in MATLAB version 4 or 5. The

objective of this GUI is to provide the user with a conve-
nient and intuitive way to set PLATSIM execution con-
trol parameters. A screen image of the PLATSIM GUI is
shown in figure 6.

Top-level graphical interface.The top-level inter-
face consists of five menu buttons (MATLABuimenu
functions) and two slider controls (MATLAB
uicontrol  functions). Additional, low-level,
supporting interfaces have been developed to provide
complete graphical access to all PLATSIM simulation
and analysis features. See “Supporting graphical inter-
faces” on page 25.

The Menu-Driven (GUI) Mode is the default execu-
tion mode and is invoked by typingplatsim  in the
MATLAB command window. Normal execution of the
PLATSIM GUI will create a file calledplatsim .mat,
which contains parameters associated with various GUI
functions. A complete description of all PLATSIM GUI
features is given in this chapter.

Figure 6.  Graphical user interface for the PLATSIM package.
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■ Workspace (see fig. 7, “Workspace button pull-down
menu.”)

• New Figure

The “New Figure” menu button simply executes
the MATLAB command figure. The creation of a
new figure is useful if graphical preprocessing or
postprocessing of PLATSIM data is desired.

• Clear & Reset Defaults

This menu button clears all (work space and glo-
bal) variables and resets them to their default val-
ues. (See filedefaults .m.) This menu option
must be invoked between successive PLATSIM
runs.

• Save Session

Selecting this menu button saves the current val-
ues of all PLATSIM variables to a binary “MAT-
file”. This utility, along with the “Load Session...”
menu button, allows users to quickly recover pre-
vious PLATSIM run-time variable settings.

• Load Session

Loads a previously saved session file and sets all
GUI object properties accordingly.

• Save Workspace

This menu button simply executes the MATLAB
save command. All work space variables are
saved on disk using the default file name
matlab .mat .

• Close Window

This menu button closes the main PLATSIM GUI
window.

■ Options (see fig. 8, “Options button pull-down menu.”)

• Modify Plant Model

This menu button has two submenu selection
options: “Frequencies” and “Damping Ratios”.
These submenu items allow the user to graphi-
cally modify or define both frequency uncertain-
ties and modal damping ratios. Details for using
these submenu options are described in “Support-
ing graphical interfaces” on page 25.

• Plotting & Printing

The “Plotting & Printing” submenu button pro-
vides the user with three plot control options: “No
Plotting”, “Plot Results”, and “Plot with Hard-
copy”. The “Plot with Hardcopy” option will plot
the analysis results on the screen and save data-
reduced versions of the plots in encapsulated
PostScript files.

• Feedback Connection

This menu button allows the user to select
between open-loop,clflag=’no’ , and closed-
loop, clflag=’yes’ , analysis modes. Specific
controller models are prescribed in the “Set
Analysis Parameters” graphical interface under
the “Analysis” menu button.

• Jitter Analysis

This menu button has three submenu selection
options: “Perform Jitter Analysis”, “Memory
Conservative Mode”, and “Jitter Windows”.
Selecting “Perform Jitter Analysis” sets
jtrflag =’yes ’ which invokes the baseline
postprocessing jitter analysis algorithms. If the
“Memory Conservative Mode” (lowmemflag =
’yes ’) is selected, jitter values are calculated as
time history data are generated. Therefore,
creating and postprocessing potentially very
large time history response vectors are not
required. The combination of
lowmemflag =’yes ’ and saveflag =’yes ’ is
not valid because time history results are not
available to write to disk. Selecting “Jitter Win-
dows” opens an additional graphical interface
(see fig. 9, “Jitter window interface,” on page 23)
for the selection of various jitter windows from

Figure 7.  Workspace button pull-down menu.

Figure 8.  Options button pull-down menu.
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either the predefined push buttons or by entering
arbitrary time values in the text field at the bottom
of the interface.

• Save Output Time History

The “Save Output Time History” submenu button
provides the user with the option to save the com-
plete output time history data; that is, variablesy
and instr  will be saved if this option is
selected; that is,saveflag =’yes ’. Note that
selecting this option has the potential of creating a
very large file(s) and therefore should be used
with caution. The output data will be saved in the
file(s) labeledy1 .mat  and, if necessary,y2 .mat ,
y3 .mat , and so on—as many as necessary so that
there is one for each disturbance event.

■ Analysis (see fig. 10, “Analysis button pull-down
menu.”)

• Time Domain Analysis

Selecting this menu button specifies that time
domain analysis will be performed; that is,
tdflag =’yes ’. The time domain and frequency
domain modes are mutually exclusive options;
that is, PLATSIM does not allow for simulta-
neous time and frequency domain analyses.

• Frequency Domain Analysis

This button specifies that frequency domain anal-
ysis will be performed; that is,tdflag =’no ’.
When frequency domain analysis is selected, the
clip window slider and text in the lower right cor-
ner of the main PLATSIM GUI will disappear.

• Set Analysis Parameters

This menu button invokes supporting graphical
interfaces that are used to define various integra-
tion and analysis parameters. The interface that is
displayed when this button is pressed is depen-
dent on the status oftdflag  andclflag . See
“Supporting graphical interfaces” on page 25.

• Display Parameters

Selecting the “Display Parameters” button will
echo the current values of PLATSIM parameters
in the MATLAB command window.

• Progress Meter

If “Progress Meter” is selected, a graphic meter is
displayed showing the percent completion of the

Figure 9.  Jitter window interface.

Figure 10.  Analysis button pull-down menu.
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simulation of the response to the current
disturbance event or of the current frequency
domain analysis.

• Begin Analysis

Selecting “Begin Analysis” executes the
MATLAB script file plattime.m  or plat-
freq.m  for time or frequency domain analysis,
depending on the analysis requested. Once an
analysis has been started, all GUI functions are
disabled. User control of the GUI will not be
returned until the analysis has been completed. As
for MATLAB version 4.2 or 5.0, the user may ter-
minate the analysis at any time by sending an
interrupt signal (Control C  on most UNIX
workstations) from the MATLAB command win-
dow. If MATLAB is unresponsive to the interrupt
signal, most UNIX systems will respond to the
suspend signal (typically,Control Z ). The user
resorting to this expedient should remember to
kill  the suspended process.

■ Inputs/Outputs (fig. 11).

• Performance Outputs

Selecting the menu item labeled “Performance
Outputs” provides access to the performance out-
put selection figure window (see “Performance
output selection interface” on page 31). See “Sup-
porting graphical interfaces” on page 25.

• Select Disturbances

This menu button allows the user to interactively
select a disturbance model to be used in the
PLATSIM analysis. See “Supporting graphical
interfaces” on page 25.

• Run Disturbances Together

This menu button controls whether several simu-
lations are run, one for each individual distur-
bance event, or whether all disturbance events
acting simultaneously are simulated.If jitter anal-
ysis is performed without selecting “Run Distur-
bances Together,” the jitter contributions from
each of the individual disturbance events are

added together to give a total jitter.For the pur-
pose of determining overall response at various
output locations, the “Run Disturbances
Together” option may provide more useful
results. Selecting “Run Disturbances Together”
sets the work space variablemultflag=’yes’ .
Warning: Running disturbances separately
requires a separate simulation for each distur-
bance event. Disturbance scenarios which have
many separate events may require excessive
CPU time to complete.

■ Quit

•  Quit MATLAB

This button simply quits the current MATLAB
session without saving any work space variables.

■ Number of Modes

A slider control which is situated at the lower left-
hand side of the top-level interface may be used to
set the number of modes (PLATSIM variable
nmode) which is to be included in the analysis. The
slider allows the user to move, with a mouse, a slid-
ing bar which sets the numeric input to the value that
appears in the text field of the slider. The mode(s) to
be used in the analysis may also be changed by click-
ing the mouse in the text field and typing the desired
scalar or vector values. A scalar entry of100  is
equivalent to[1:100]  in MATLAB notation; that
is, the first 100 modes will be used in the simulation.
Vector entries are used when multiple mode ranges
are desired or when mode range starting points do
not include the first mode. All vector entries must
follow MATLAB’s syntax. For example, to capture
the rigid body response plus the flexible body
response between modes 100 and 200, the user
would enter[1:6 100:200]  in the slider’s text
field. Negative scalar values are also permitted, and
are used to indicate that asingle mode will be used
in the simulation, for example, if a text field entry of
-100  is used, only mode 100 will be used in the
simulation. A slider value of0 implies all available
modes will be used in the simulation.

■ Enter Clip Window

This GUI item is used to define the clip window
(tclip ) used in time domain analysis. The func-
tionality of this slider is similar to the mode slider.
Definition of thetclip  execution control parame-
ter is provided in “Execution Control Parameters” on
page 16.

Figure 11.  Inputs/outputs button pull-down menu.
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Supporting graphical interfaces.Supporting graph-
ical interfaces are accessed from either the top-level
menu buttons or from other support interfaces. All
top-level menu button labels ending with the ellipsis
symbol (...) access a supporting interface. Instructions for
each supporting interface are presented below in an item-
ized list, with each item label specifying the menu path
from the top-level menu buttons. For example, the
description of the frequency modification interface has
this label: Options -> Modify Plant Model ->Frequen-
cies..., which implies that it is accessed from the top-
level “Options” button under the “Modify Plant Model”
submenu button.

All PLATSIM’s GUI routines operate in an asyn-
chronous input mode, with the exception of the distur-
bance selection GUI, which is a synchronous process.
Synchronous processing temporarily suspends other
MATLAB processes and waits for the user to respond to
the current synchronous process before continuing.
Therefore, once the “Select Disturbances...” button is
pressed, a disturbance selection should be made before
attempting to access other PLATSIM features.

■ Options -> Modify Plant Model -> Frequencies...

Selecting the “Frequencies” submenu button of the
“Modify Plant Model” option provides the user
access to the Spacecraft Modal Uncertainty Graphi-
cal User Interface tool shown in figure 12, “Space-
craft modal uncertainty interface.”Note: Each time
the “Frequencies” submenu button is selected,
frequency values as defined in file(s)omega.dat
or omega.mat  are used as the initial values.This
interface tool has two options for adding modal
uncertainties to the plant structural model. The two
types of uncertainties considered are constant scaling
and random scaling. The constant scaling uncertain-
ties are defined as follows:

Whereas the random scaling uncertainties are defined

ωi
* ωi

o ωi
o

Sj×+=

ωi
* ωi

o ωi
o

Ri Sj××+=

Figure 12.  Spacecraft modal uncertainty interface.
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The variableSj in the above equations represents
user-defined constant scale factor(s) for each prescribed
range, andRi represents a set of random numbers, one for
each mode, uniformly distributed over the interval (0,1)
(by the MATLAB random number generatorrand ).

•  modes (frequency)

The frequency spectrum axis may be changed
from “Mode Number” (which is the default set-
ting) to “Frequency (Hz)” by using the top push-
button on the interface.

•  Reset

The “Reset” button resets the frequency uncer-
tainty scale factors to zero for all modes and sets
the number of ranges to three.

•  range

The frequency spectrum, as defined in file(s)
omega.dat  or omega.mat , may be subdivided
into several intervals (ranges) to allow for differ-
ent levels of uncertainties for different modes
within the frequency spectrum. A “range”, as
defined by the interface, is denoted by the interval
(a,b], where “a” and “b” are the lower and upper
bounds on the interval, respectively. For example,
if a = 10, and b = 20, all modes starting from 11
through 20 (including mode 20) will have the
same S factor. The lower and upper bounds
(“range” label on the GUI) for the interval may be
changed by using a mouse to “click-and-drag” on
the vertical lines that are used to represent interval
ranges.

•  value

The scale factors (“value” label on the GUI) may
also be changed by using a mouse to “click-and-
drag” on the shaded regions between the vertical
lines. Both “range” and “value” may be changed
by using keyboard entries once the corresponding
graphical element has been activated. A “range”
or “value” element is activated by using the
mouse to “click” on a vertical line or shaded
region, respectively. Once a graphical element
has been activated, its numeric value will be dis-
played in the “range” or “value” text area of the
graphical interface.

•  Ranges

The user may change the number of ranges by
selecting the interface button labeled “Ranges”.

•  Scaling

A user may choose between the two allowable
types of scaling by selecting “constant” or “ran-

dom” from the “Scaling” button (constant is the
default setting).

•  mode by mode

See item: Options -> Modify Plant Model -> Fre-
quencies... ->mode by mode

•  File

The “File” button allows the user either to save
the current frequency uncertainties to a “.mat”
file or load a preexisting “.mat”  file containing
frequency uncertainties.

• Close

This menu button closes the Spacecraft Modal
Uncertainty Graphical User Interface.

■ Options -> Modify Plant Model -> Frequencies... ->
mode by mode

Selecting the “mode-by-mode” button from the
Spacecraft Modal Uncertainty Graphical User Inter-
face provides access to a graphical interface which
allows convenient mode-at-a-time frequency modifi-
cations. Figure 13 on page 27 shows a screen image
of the mode-by-mode graphical interface. This inter-
face gives the user a list of frequencies of all modes
in a read only text window displayed on the right
side of the interface.

•  Frequency of Interest (Hz)

The user can scan the list of frequencies to select a
particular mode using the “Frequency of Interest”
text field. In figure 13, “Mode-by-mode fre-
quency modification interface,” on page 27, a
value of 1 Hz has been entered as the frequency of
interest, and mode 25 was determined to be the
closest mode, 1.0184 Hz.

•  Desired Value (Hz)

In figure 13 on page 27, the value of the currently
selected mode, 1.0184 Hz, may be changed by
either deleting the text and reentering a new
value, or by scaling it using any arithmetic opera-
tor, for example, +, –, * (for multiplication), or /
(for division).

•  Change Selection

The user can also scroll through the list of fre-
quencies using the “Change Selection” buttons.
The value in Hz of the currently selected mode
will be displayed in the “Desired Value” text
field. The currently selected mode is the mode
that is between the two horizontal dashed lines.
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•  Reset

The “Reset” button restores the modal frequencies
to their nominal values, that is, those defined with
the interface in figure 12 on page 25.

•  Undo

The “Undo” button clears only the last frequency
modification.

•  Close

The “Close” button closes the interface and
accepts all frequency changes.

■ Options -> Modify Plant Model ->Damping Ratios...

Selecting the “Damping Ratios” button from the
“Modify Plant Model” menu provides the user
access to a graphical tool for defining/modifying the
spacecraft modal damping schedule. The operation
of the damping schedule graphical interface is very
similar to the frequency modification graphical inter-
face. The graphical damping tool allows users to eas-
ily modify the structural damping ratios. Structural
damping ratios and ranges are specified by using a
mouse to “click and drag” on graphical elements that

represent modal damping ratios and ranges.
Keyboard entries are also permitted once a modal
damping range or value element has been activated
by a mouse click (see above frequency modification
description for definition of ranges, values, and
active elements). Damping schedules may also be
saved or loaded by using the “File” button. This tool
uses, as its default damping schedule, the schedule
defined in the user-changeable filemkdamp.m. If
mkdamp.m has not been defined, then a default
damping schedule of 0.25 percent is assumed for all
modes.

■ Analysis ->Set Analysis Parameters... (time domain
analysis)

This interface provides access to various PLATSIM
time domain analysis parameters. See figure 14 on
page 28 for a screen image of this interface. As
mentioned in “Top-level graphical interface” on
page 21, the interface that is displayed when the “Set
Analysis Parameters” button is pressed is dependent
on the status oftdflag  andclflag . The follow-
ing five time domain analysis features are accessible
with this interface:

Figure 13.  Mode-by-mode frequency modification interface.
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•  Controller Definition

Pressing the “Name & Type” button opens the
GUI shown in figure 15 on page 29. In this win-
dow, the user must enter the controller file name
and select whether it is a linear or nonlinear
controller. The file name is stored in string
variablenlcon  and the type is in string variable
linflag .

•  Controller Implementation

The linear or nonlinear implementation methods
(impflag ) can be selected by using this inter-
face. See “Time Domain” on page 13, and
“Execution Control Parameters” on page 16 for a
complete description of controller implementa-
tion methods.

•  Continuous- or Discrete-Time Controller

PLATSIM variablectflag  is set using the but-
tons labeled: “continuous”, “discrete”, and vari-
able tsc  is defined in the “sample time” text
field. Select “discrete” (ctflag =’no ’) for
mixed-time controllers, that is, for controllers
with both continuous and discrete states.

•  Controller Integration

The desired nonlinear controller integration rou-
tine may be selected from the pop-up menu on the
“Controller Integration” panel. The additional
integration parameters that can be set with this
interface are minimum step size, maximum step
size, and relative error tolerance.

•  Plant Integration

The choice of three plant integration routines are
available in this release of PLATSIM. The pop-up
menu on the “Plant Integration” panel provides
the interface to these choices: zero-order hold,
first-order hold, and Runge-Kutta 34.

■ Analysis -> Set Analysis Parameters... (frequency
domain analysis)

This interface provides access to various PLATSIM
frequency domain analysis parameters. See
figure 16, “Set analysis parameters (closed loop, fre-
quency domain),” on page 29 for a screen image of
this interface. The following six frequency domain
analysis features are accessible with this interface:

Figure 14.  Set analysis parameters interface (time domain).
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Figure 15.  Controller definition interface.

Figure 16.  Set analysis parameters (closed loop, frequency domain).
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•  Bode plot units

The magnitude and frequency units on the Bode
plots are defined by using this interface. The vari-
ables corresponding to the magnitude and fre-
quency units are bmagax and bfrax ,
respectively. See “Execution Control Parameters”
on page 16.

•  Frequency bounds

Upper and lower frequency bounds are defined
using this interface. The variables corresponding
to the upper and lower bounds areiu  and il ,
respectively. Both entries are in powers of ten,
that is, 10il  and 10iu . The units for the fre-
quency bounds are defined by the parameter
bfrax .

• Frequency points

This panel has three options: include model
frequencies (frqflag ), extra frequency points
(usrfrq ), and the number of points (npts ) at
which frequency domain analysis will be done.
Selecting the “Include model frequencies” button
sets variablefrqflag =’yes ’, which augments
the nominal frequency vector with model
frequencies. The nominal frequency vector is
defined by using the MATLAB command:
logspace (il ,iu ,npts ). See “Frequency
Domain” on page 14, for a list of assumptions and
restrictions for frequency domain analysis.

• Transfer function definition

PLATSIM has the capability of performing Bode
analysis on 16 closed-loop and 9 open-loop trans-
fer functions. Transfer functions may be selected
from the pop-up menu on the “Transfer Function
Definition” panel or selected graphically by using
the mouse to point and click on the block diagram
input/output symbols. See “Frequency Domain”
on page 14 for a description of transfer function
inputs and outputs.

•  Controller

Pressing the “Controller” button opens the same
GUI shown in figure 15 on page 29. In this win-
dow, the user must enter the controller file name
and whether it is a linear or nonlinear controller.
The file name is stored in string variable,nlcon
and the type is in string variable,linflag .

• Connections

Selecting the button labeled “Connections” pro-
vides access to the graphical interface shown in
figure 17, “Input/output connections interface,”

on page 31. Once a transfer function has been
defined, specific input/output connections may be
specified with this interface. Variablesdesinti
and desinto  (see “Execution Control Parame-
ters” on page 16) are defined with this interface.
The interface will display all possible inputs and
outputs for a given transfer function. Inputs and
outputs are labeled asinput_xyz  for inputs and
output_xyz  for outputs, wherexyz  is the
unique identification number as specified in data
files instdata .m and distdata.m . See
“Instrument Data File” on page 4 for descriptions
of identification numbers. To use the interface,
select the input/output pairs and press the “Con-
nect” button. Connections are made from each
activated input to all activated outputs. In
figure 17, “Input/output connections interface” on
page 31, two separate sets of connections have
been made; that is,input_2  is connected to
outputs 1 , 3 and 6, and input_6  is con-
nected tooutputs_3  and4. (Also see fig. 18 on
page 31, “Performance output selection inter-
face.”) Input and output buttons can be activated
individually by pressing each button separately,
or in groups by using the middle mouse button
and dragging a rectangle around the desired
inputs and/or outputs. The “Delete All” button
breaks all connections and setsdesinti =[] and
desinto =[]. The “Delete” button, while acti-
vated, permits connections to be broken from
individual inputs or outputs. Transfer functions
using external disturbances as inputs require a
disturbance scenario to be specified so that spe-
cific inputs may be correctly displayed. There-
fore, if the “Connections” button is pressed before
a disturbance is chosen, the user will be required
to make a disturbance scenario selection using the
interface shown in figure 19 on page 31 before
individual connections can be specified.

■ Inputs/Outputs ->Performance Output...

Selecting the submenu item labeled “Performance
Outputs” provides access  to the performance out-
put selection figure window shown in figure 18 on
page 31. The performance output window provides a
menu-driven method of selecting a full or partial set
of output locations from those defined in the user-
defined functioninstdata .m. This utility allows
for a large database of output locations to be main-
tained in functioninstdata .m, without the compu-
tational expense of solving for all these outputs in
every analysis. The labeling and grouping of the
menu items for the performance output window are
determined by the third field in the work space vari-
able instr , which itself is defined in function
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Figure 17.   Input/output connections interface.

Figure 18.  Performance output selection interface.

Figure 19.  Disturbance module interface.
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instdata .m. All entries that have exactly the same
character string in the third field ofinstr  will be
under the same pull-down menu, and this common
character string will be used to title the menu group.
See “Instrument Data File” on page 4 for more infor-
mation on the instrument data file. The performance
output selection figure window has three pushbutton
functions. These buttons are used to select all out-
puts, deselect all outputs, or close the selection
window, and are labeled “Set All”, “Clear All”, and
“Close”, respectively. A user may select perfor-
mance outputs individually, or as groups of outputs
using the “Select All” option for each group, or all
groups using the master “Set All” button. Any cur-
rently selected output may be deselected by simply
reselecting the item, or using the “Clear All” button.
An additional level of print control is available for
each group of performance outputs using the “Print”
button at the bottom of each group’s pull-down
menu. Deselecting the “Print” button disables print-
ing and plotting for all performance outputs under
that menu heading.

■ Inputs/Outputs ->Select Disturbances...

When the pull-down menu button labeled “Select
Disturbances” is selected, an additional figure
window with  a  top-level menu bar will appear;
see figure 19, “Disturbance module interface,” on
page 31. The disturbance window top-level menu
bar is used to display labels pertaining to disturbance
scenario groups that may consist of one or more dis-
turbance scenarios. A single instrument/system may
have multiple disturbance scenarios. For example, a
scanning telescope may have a disturbance scenario
that describes the forces/torques related to the

motion of a scanning mirror and a separate distur-
bance scenario for calibration operations. The entries
in the cnames  and dnames matrices (see
“Disturbance Data” on page 7 for more details) pro-
vide the names for the disturbance scenario groups
and the disturbance scenarios, respectively. A distur-
bance scenario may be selected from the pull-down
menu with a single click from a mouse. Upon selec-
tion, the appropriate disturbance models, as defined
in the user provided filedistdata .m, will be exe-
cuted and instrument/system disturbance data will be
loaded into the MATLAB work space. This process
may take several seconds to complete, depending on
the number of data points and the number of individ-
ual force and/or torque profiles that make up the dis-
turbance scenario. Note that if the user attempts to
run a simulation without first selecting a disturbance
model, a warning message will be displayed with
instructions to select a disturbance followed by the
display of the disturbance module figure window.

Batch Mode

In batch mode, each PLATSIM execution control
parameter is set either by the user with MATLAB assign-
ment statements before theplatsim  command is
entered or it is used with its default value. Execution con-
trol parameters may be set in an interactive MATLAB
window, but it is primarily intended to provide a way to
run PLATSIM in the background by using commands
from a prewritten script.

Batch Mode Operation

Batch mode operation will be demonstrated with two
batch mode examples.

Example 1. MATLAB is started in a directory containing two files which are listed here, startup.m and
runplat.m:

::::::::::::::
startup.m
::::::::::::::
format compact
path(‘/scb3/usr5/eos/platdir’,path)
path(‘/scb3/usr5/eos/platdir/eos_eg’,path)
::::::::::::::
runplat.m
::::::::::::::
diary % generate a diary of the run
runmode=’b’; % run in batch mode
tdflag = ‘n’; % perform frequency domain analysis
nmode = 40; % use first 40 modes
clflag = ‘n’; % run Bode plot open loop
casenum = 7; % use ‘MODIS static imbalance’ disturbance

% from the EOS-AM-1 example
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prtflag = ‘n’; % do not write .eps files
desinto = 14; % only output is ‘MODIS Pitch’
ndist = -2; % use only the second event from the

% ‘MODIS static imbalance’ disturbance
phold = 120; % give the user at least 2 minutes to look at plot
platsim % This should now run a single input/single output

% Bode plot using 1000 points logarithmically spaced
% between .01 and 10,000.

MATLAB is started and the command

>> runplat

is given. MATLAB  performs the necessary  calcula-
tions and displays the Bode plot. To exit from
MATLAB, the  command

>> quit

is given. Now two new files are in the directory,
MODIS_static_imbalance_freq .mat, which
contains the results of the Bode calculation in MATLAB
readable form, anddiary,  which shows what
occurred:

PLATSIM initialization in progress...

Selected disturbance case: MODIS
static imbalance

Initiating Bode Plot for bodemthd
=[3 3]

Task completed in 13.05 seconds

Plot and print Bode plots Task
completed in 8.16 seconds

PROGRAM COMPLETED Total cpu time =
22.72 seconds >> quit

2204653 flops.

Example 2uses a batch operation utility such as the
UNIX at  command. First a command script is prepared
and written to a file, for example,doit  (line numbers
are not present in the script; they have been added here
for reference purposes):

1. setenv DISPLAY

2. /usr/local/matlab-4.2/bin/matlab
<< EOF > mat-out

3. diary

4. runmode=’b’;

5. casenum=7;

6. pmflag=’n’;

7. platsim

8. quit

9. EOF

A UNIX command such as SUN Solaris command
at –m –f doit 20:00  will wait until 8 p.m. and then
start executing the commands indoit . Line 1 ofdoit
may get around a problem MATLAB has on some sys-
tems while trying to run plotting commands without run-
ning them from a logged-in terminal. Line 2 starts
MATLAB running and uses the following lines as input
to MATLAB until it finds the line (9) matching theEOF
in line 2. MATLAB then executes lines 3 through 8,
causing it to run PLATSIM in batch mode by using dis-
turbance number 7 (MODIS static imbalance) and by
using defaults for all other run parameters except
pmflag . When the job is done, the user can harvest
results from the files created by PLATSIM. (See
chapter 5, “PLATSIM Output.”)
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Chapter 5

PLATSIM Output

PLATSIM returns its results in two general manners,
interactive and permanent. Interactive output includes
MATLAB work space variables which are set to the
results of PLATSIM calculations, plots, and tables dis-
played in MATLAB figure windows. Permanent output
consists of a variety of files. The most useful of the
PLATSIM work space variables can be captured in
MATLAB MAT-files. Plots can be written as encapsu-
lated PostScript files. Tables of jitter values are written
as both ASCII files and in PostScript form.

General file-naming conventions will be given first,
and the modifications necessary to fit PC file-naming
limitations will be given at the end of each section.

Time Domain Analysis

Full-time histories.The results of each simulation
are contained in a variabley  which contains one column
for each performance measurement output and one row
for each row in the user-supplied disturbance time histo-
ries used to drive the simulation. If the user needs these
full-time histories, the user can elect to have them written
to MAT-files (saveflag  on page 19 and “Save Output
Time History” on page 23).

1. Filey1 .mat  will contain the time history by using the
first disturbance event or the simulation by using all
events simultaneously.

2. If there is more than one disturbance event and they
are being run separately, the additional time histories
are in filesy2 .mat , y3 .mat , ... , up to as many as are
needed.

3. Each file contains the time history in variabley  as
previously stated, a scalar variableperiod  that con-
tains the time increment between discrete points of
the simulation, and a character arrayinstr  whose
rows contain the names of the performance outputs
that are being simulated.

4. Note: Depending on the numbers of performance
outputs, the time steps of simulation, and the dis-
turbance events, these files can be very large and
can require significant disk space.

Time history plots and reduced time history data.
The user can elect to have the time histories plotted on-
screen and further can elect to write encapsulated
PostScript files of the on-screen plots. If the latter is cho-
sen, a reduced form of the data is plotted. Although some
simulations involved a hundred thousand or even a mil-
lion time steps, the reduced data typically involve vector

lengths of less than ten thousand. The reduction is per-
formed in such a manner (ref. 3) that the visual effect of
plotting the reduced data is virtually identical to that of
plotting the full time history. Thus, the results are faster
on-screen plotting, faster writing of encapsulated Adobe
PostScript files, smaller PostScript files, and faster print-
ing of these files by a PostScript printer.

The following rules define how time history plot
variable names are represented in the MATLAB work
space:

1. If each disturbance event is simulated separately,
there is one time history plot variable for each combi-
nation of performance measurement output and dis-
turbance event.

2. If the disturbance events are run together, there is one
time history plot variable per performance measure-
ment output.

3. The reduced data from a typical time history is con-
tained in a MATLAB variable with a name which
looks likep113_1 .

• The 113  is a performance output identification
number taken from the third row of the user-
supplied pout  matrix. (See “Instrument data
parameterpout”  on page 6.)

• The number1 indicates that this is the response to
the first event in the chosen disturbance scenario if
events are run separately, or that this is a simula-
tion using all the events simultaneously.

• If there is more than one event in the disturbance
scenario, and if the events are being run separately,
the reduced response to the second event will use
the number2 after the underscore, and so forth.

• The variable p113_1  (or like variables) is a
2-column matrix. Column 1 contains time data,
and column 2 is the performance output data.

• The plots are made by plotting the second column
of this variable as a function of the first column.

The following rules define the file-naming
convention used for the previously mentioned time
history  plot variables. All these variables are saved in
a MATLAB MAT-file with a name such as
MODIS_static_imbalance_1_time .mat .

1. The MODIS_static_imbalance  part of the
name comes from replacing any blanks with under-
score characters in the name for the disturbance used
in this simulation.

2. The number1 is used if these data come from the first
disturbance event in the disturbance scenario when
events are being run separately, and it is also used if
the events are run simultaneously.



36

3. If the events are being run separately, the second
event would have the number2.

4. The time  in the name distinguishes this file from a
similarly named file from the frequency domain anal-
ysis part of PLATSIM.

If the user chooses the option “Plot with Hardcopy”,
PLATSIM writes encapsulated PostScript files of the
plots, which the user can send to the printer. These files
have names such asMODIS_Yaw_1_time .eps .

1. The MODIS_Yaw part of the name comes from
replacing any blanks with underscore characters in
the name for the performance output used in this
simulation.

2. The number1 andtime  follow the same convention
as described in the previous paragraph.

Jitter results and plots.If the calculation of jitter is
elected, the results of the jitter calculation are available
to the user in several forms. The following rules define
how jitter work space variable names and file names are
generated.

1. If disturbance events are run separately, the results of
the jitter calculation for the first event are in
MATLAB variable JITTER1 ; those for the second
event (if any) are inJITTER2 , and so forth.

2. Each of these variables is a matrix with one column
for each jitter window and one row for each perfor-
mance output (the order of the rows is determined by
the numerical order of the identification numbers of
the performance outputs).

3. The “total jitter” in the form of the sum of the individ-
ual jitter calculations is given in the variable
JITTER .

4. If the disturbance events are run simultaneously, the
results are inJITTER1  andJITTER,  which, in this
case, are identical.

5. The variableJITTER1 , JITTER2  (if defined), and
so forth are preserved in the same files containing the
reduced time histories (see the previous section). For
example, JITTER2  would be in file
MODIS_static_imbalance_2_time .mat  fol-
lowing the example in the previous section.

6. The variableJITTER  would be written in a file
namedMODIS_static_imbalance_time .mat .

The table of jitter values is displayed on the screen.

1. If the events are being run separately, a table is pre-
sented for each event and another is presented for the
jitter totals.

• The worst value in each column is displayed in a
contrasting color for emphasis.

• These tables are also written in both PostScript and
ASCII files.

• The PostScript format tries to emulate what is
shown on the screen; however, if too many perfor-
mance measurement outputs exist, the PostScript
file prints two or more pages.

• The PostScript files for the individual disturbance
event jitter results have names such as
MODIS_static_imbalance_1_jitr .ps
and
MODIS_static_imbalance_2_jitr .ps ,
while the table with overall totals is in
MODIS_static_imbalance_jitr .ps .

• For the ASCII files, the names are the same except
that theps  extension is replaced byout .

2. If there is only one event in the disturbance scenario,
or if the disturbance events are run simultaneously,

• The one jitter result is written to the files with
names such as
MODIS_static_imbalance_jitr .ps and
MODIS_static_imbalance_jitr .out  (no
event number).

Example.An example of time domain analysis and
jitter analysis, which is based on the EOS-AM-1 space-
craft, is presented in appendix D. In the example,
PLATSIM runs use the default values of all execution
time parameters, along with the disturbance scenario
MODIS static imbalance .

File-naming conventions for PC’s.PC’s running
under DOS (Disk Operating System) have limitations on
which character strings may be file names. Letters are
mapped to upper case. The file name may have, at most,
eight characters, optionally followed by a period and an
extension of one to three characters. Consequently,
PLATSIM output files are given alternate names which
conform to PC DOS restrictions, if the program is run on
a PC:

1. The file which was called, for example,
MODIS_static_imbalance_1_time .mat  is
now called JITTER1.mat.  The file which was
called, for example,
MODIS_static_imbalance_time .mat is now
calledJITTER .MAT.

2. The file which was called, for example,
MODIS_static_imbalance_1_jitr .out is
now calledJITR_1 .OUT.
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3. The file which was called, for example,
MODIS_static_imbalance_1_jitr .ps is
now calledJITR .PS.

4. The file which was called, for example,
CERES2_Yaw_2_time .eps  is now called
P9_2_T.EPS.

• The number 9 comes from the identification num-
ber used for the instrument namedCERES2 Yaw.

• The number 2 indicates the disturbance event
number.

• The letterT indicates that the file contains a time
history.

• Only single or double digit identification numbers
are allowed for the performance outputs.

• Up to 99 events in a disturbance scenario are
allowed.

Frequency Domain Analysis

Frequency response matrix.In frequency domain
analysis, PLATSIM calculates either the open-loop or
closed-loop frequency response matrix from a set of
user-selected inputs to a set of user-selected outputs. As
mentioned in the Instrument Data File on page 4, the
inputs may be in the form of attitude or attitude rate ref-
erence commands, disturbances at the plant input, exter-
nal disturbances, or sensor noise, if closed-loop response
is requested, and in the form of attitude or attitude rate
reference commands, disturbances at the plant input, or
external disturbances, if open-loop response is requested.
Similarly, the outputs may be in the form of tracking
error, control effort, performance output, or measure-
ment output, if closed-loop response is requested, and in
the form of control effort, performance output, or mea-
surement output, if open-loop response is requested.
Moreover, all or a user-specified subset of the inputs or
outputs may be chosen by the user. The vector of
frequency points is generated from the execution control
parameters defined by the user. (See parameters:il , iu ,
npts , clflag , usrfrq , andfrqflag in table 1.)

The frequency response matrix is stored in a
MATLAB work space arrayg. The size of arrayg is k by

, wherek is the number of elements in the fre-
quency vector,  is the number of selected inputs, andp
is the number of selected outputs. Subsequently, thek by

 gain matrix in decibels is stored in MATLAB vari-
able m, and thek by  wrapped phase matrix in
degrees is stored in MATLAB variablep. The frequency
vector is stored in a MATLAB variablefrq .

The variablesfrq , g, m, andp are work space vari-
ables that are available to the user when PLATSIM
completes the frequency domain calculations. These

variables are also written in MATLAB binary form to a
MAT-file following naming convention:

1. If the inputs are reference commands, the file name
would bereference_command_freq .mat .

2. If the inputs are disturbances at the plant input, the
file name would be
input_disturbance_freq .mat .

3. If the inputs are external disturbances, the file name
would be
MODIS_static_imbalance_freq .mat . The
MODIS_static_imbalance  part of the name
comes from replacing any blanks with underscore
characters in the name for the disturbance used in this
analysis.

4. If the inputs are measurement noise, the file name
would bemeasurement_noise_freq .mat .

Bode plots.If plotting is requested, the Bode plots
for the selected outputs in response to the selected inputs
are plotted on-screen. If “Plot with Hardcopy” is
selected, in addition to on-screen plots, PLATSIM writes
encapsulated Adobe PostScript files of the plots. These
files have the following naming convention:

1. If the outputs are tracking errors, the file name
would be tracking_error_1_4_freq .eps .
The number 1 corresponds to the identification num-
ber associated with the measurement output used in
the analysis. The “4” corresponds to the identification
number associated with the selected input. For exam-
ple, if the input is an external disturbance, the
number 4 indicates that the input used to generate the
Bode plot corresponds to the disturbance event with
identification number 4 for the disturbance scenario
chosen.

2. If the outputs are control effort, the file name would
be control_input_1_4_freq .eps . The num-
ber 1 corresponds to the identification number associ-
ated with the actuator used in the analysis. The
number 4 corresponds to the identification number
associated with the selected input. For example, if the
input is a reference command, the number 4 indicates
that the input used to generate the Bode plot corre-
sponds to a reference command for measurement out-
put with identification number 4.

3. If the outputs are performance outputs, the file name
would be MODIS_Yaw_4_freq .eps . The
MODIS_Yaw part of the name comes from replacing
any blanks with underscore characters in the name for
the performance output, supplied by the user, that is
used in this analysis. The number 4 corresponds to the
identification number associated with the selected

τ p×
τ

τ p×
τ p×
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input. For example, if the input is an external distur-
bance, the number 4 indicates that the input used to
generate the Bode plot corresponds to the disturbance
event with identification number 4 for the disturbance
scenario chosen.

4. If the outputs are measurement outputs, the file name
would be
measurement_output_1_4_freq .eps . The
number 1 corresponds to the identification number
associated with the measurement output used in the
analysis. The number 4 corresponds to the identifica-
tion number associated with the selected input. For
example, if the input is measurement noise, the num-
ber 4 indicates that the input used to generate the
Bode plot corresponds to a measurement noise in the
measurement output with identification number 4.

An example of frequency domain analysis, which is
based on the EOS-AM-1 spacecraft, is presented in
appendix D. In the example, PLATSIM runs use the
default values of all execution parameters except that
tdflag  = ‘n’ selects frequency domain analysis, along

with the disturbance scenarioMODIS static
imbalance .

File-naming conventions for PC’s.As in the previ-
ous section on time domain analysis, the file-naming
conventions just given will not work for PC’s. The con-
ventions used on PC’s are exemplified here:

1. The frequency response matrix, the gain and phase
matrices, and the frequency vector are stored in file
FREQ.mat .

2. The Bode plots, irrespective of the type of input or
output, will be o1i4_f .eps . The letterso andi  are
prefixes that denote output and input, respectively.
The number 1 denotes the identification number asso-
ciated with the output (any form of output). The num-
ber 4 denotes the identification number associated
with the input (any form of input).

3. Using this naming convention, the identification num-
bers on inputs and outputs can each range from 1
to 99 without violating the PC DOS file-naming limi-
tation of 8 characters before the period.
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Chapter 6

Diagnostic Messages

The error and diagnostic messages generated by
PLATSIM are given below. The format used below gives
a brief description of a scenario that may cause the error,
the actual error message as seen in the MATLAB com-
mand window, followed by a recommended solution.

• In the GUI execution mode, if the “begin analysis” but-
ton is pushed before a disturbance is selected from the
disturbance menu, PLATSIM displays the “PLATSIM
DISTURBANCES” menu and the following message
appears in the MATLAB window.

A disturbance case was not specified, please select one
now.
Solution: Choose a disturbance from the pop-up menu.

• In the batch execution mode, if PLATSIM is executed
without the execution control parametercasenum
having been defined, the following message appears in
the MATLAB window, and the execution of PLATSIM
terminates.

The batch mode disturbance variable ’casenum ’ is
not defined. Please select a valid case number from
file: ’ distdata.m ’ and resubmit ’platsim ’.
Solution: Assign a valid value to the execution control
parameter casenum  and restart the execution of
PLATSIM.

• In the batch execution mode, if PLATSIM is executed
with the execution control parametercasenum  having
been set to an invalid value, a message of the following
form appears in the MATLAB window, and the execu-
tion of PLATSIM terminates.

casenum=200 , is not a valid disturbance case num-
ber. Select an integer between 1 and 15.

Check batch mode input data.
Solution: Assign a valid value to the execution control
parameter casenum  and restart the execution of
PLATSIM.

• If the variablesmapping, instdat , cnames , and
dnames, as defined in the user-provided file
distdata.m , do not satisfy specific relationships,
the following message will appear in the MATLAB
window.

Disturbance data is not correct!

Solution: See “Disturbance Data” on page 7 for a com-
plete description ofdistdata.m  variables.

• In the GUI execution mode, if the scalar parameter
tclip  contains a value greater than the simulation
time, then a message of the following form appears in
the MATLAB window.

tclip (=1000) is larger than tfinal
(=999.974)
input a new value fortclip -->
Solution: Type in a valid value fortclip  after the
arrow, followed by a carriage return.

• If the scalar parametertclip  defined is greater than
the simulation time and the execution mode is batch,
the following message will appear:

tclip  is larger than tfinal

tclip  is set to 0.5*tfinal .

Solution: Adjust tclip  or increase the simulation time.

• If any mode number chosen for analysis is greater than
the number of modes available in the fileomega.dat
or omega.mat , the following message will appear in
the MATLAB window and program execution will
stop.

An error has been detected in file
formplnt . Maximum mode number chosen
is greater than number of modes avail-
able. Program termination in formplnt .

Solution: Check the mode numbers and restart the
program.

• If the number of rows of arrayphi  (in file phi .mat  or
phi .dat ) is not an integer multiple of the number of
modal frequencies defined in fileomega.mat  or
omega.dat , the following error message will appear
in the MATLAB window and program execution will
stop.

The number of rows of “phi” (in file
phi.mat  or phi.dat ) must be an integer
multiple of the number of elements of
`omega´ (in file omega.mat  or
omega.dat ). Program termination in
formplnt .

Solution: Make thephi  andomega files consistent and
restart the program.

• If a grid point defined in fileinstdata .m for the
spacecraft control system input is not defined in array
phi  (in file phi .mat  or phi .dat ), the following
error message will appear in the MATLAB window
and program execution will stop.

An error has been detected in file
formplnt.m.  A FEM SCS input grid
number as referenced in file
instdata.m  is not available in file
phi.dat  or phi.mat . Program termina-
tion in formplnt .

Solution: Check the first row of parameteract  in file
instdata .m, check file phi .dat  or phi .mat , and
restart the program.
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• If a grid point used in fileinstdata .m for the mea-
surement outputs is not defined in array phi (in file
phi .mat  or phi .dat ), the following error message
will appear in the MATLAB window and program exe-
cution will stop.

An error has been detected in file
formplnt.m . A FEM measurement output
grid number as referenced in file
instdata.m  is not available in file
phi.dat  or phi.mat . Program termina-
tion in formplnt .

Solution: Check the first parametermout  in file
instdata .m and check filephi .dat  or phi .mat , and
then restart the program.

• If a grid point used in fileinstdata .m for the perfor-
mance outputs is not defined in arrayphi  (in file
phi .mat  or phi .dat ), the following error message
will appear in the MATLAB window and program exe-
cution will stop.

An error has been detected in file
formplnt.m  A FEM performance output
grid number as referenced in file
instdata.m  is not available in file
phi.dat  or phi.mat . Program termina-
tion in formplnt .

Solution: Check the first row of parameterpout  in file
instdata.m , check filephi.dat  or phi.mat , and
restart the program.

• If a grid point used in filedistdata .m for a distur-
bance sequence is not defined in arrayphi  (in file
phi .mat  or phi .dat ), the following error message
will appear in the MATLAB window and program exe-
cution will stop.

An error has been detected in file
formplnt.m . A FEM disturbance grid
number as referenced in file
distdata.m  is not available in file
phi.dat  or phi.mat . Program termina-
tion in formplnt .

Solution: Check filedistdata .m and filephi .dat  or
phi .mat , and restart the program.

• If a step size smaller than the minimum step size,
defined by the user, is required in the controller state or
plant state propagation, the following error message
will appear in the MATLAB window and program exe-
cution will stop.

A step size smaller than the minimum is required in
filename.m.

Note: Filename  may take the name of any of the
six routines that perform controller state or plant state

propagation with step size control:rk23 , rk32 , rk34 ,
rk45 , rstiff , nlplnt4 .

Solution: (1) Decrease the minimum step size allowed
from the GUI window or in variableoption ;
(2) Increase the integration error tolerance from the GUI
window or in variableoption .

• If the number of iterations in one integration step for
the controller state or plant state propagation goes
beyond the user-defined maximum number of itera-
tions allowed, the following error message will appear
in the MATLAB window and program execution will
stop.

Maximum number of iterations reached without con-
vergence infilename.m

Note: Filename  may take the name of any of the
six routines that perform controller state or plant state
propagation with step size control:rk23 , rk32 , rk34 ,
rk45 , rstiff , nlplnt4 .

Solution: (1) Increase the maximum number of iterations
allowed per step from the GUI window or in variable
option ; (2) Increase the integration error tolerance
from the GUI window or in variableoption .

• If the number of iterations in the solution check of the
nonlinear controller goes beyond the user-defined max-
imum number of iterations allowed, the following error
message will appear in the MATLAB window and pro-
gram execution will stop.

Maximum number of iterations reached without con-
vergence infilename.m  due to solchk.

Note: Filename.m may take the name of any of
the four routines that perform controller state propaga-
tion: nlsim.m , nlsim2.m , nlsim_m.m ,
nlsim_m2.m .

Solution: Increase the maximum number of iterations
allowed per step from the GUI window or in variable
option .

• If an attempt is made to use the memory conservative
feature of PLATSIM without having compiled the
MEX-file for lmtime  or trplomem , one of the fol-
lowing error messages will appear in the MATLAB
window and program execution will stop.

LMTIME: MEX-file for lmtime  not found, cannot
proceed.

trplomem.m:  For ` help´  only, must run the
MEX-file from trplomem.c

Solution: Compile the MEX-files for lmtime  and
trplome  or do not attempt to run the memory conser-
vative option.
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• If PLATSIM function nlinitcl .m or nlinitol.m
executes one of the commandsexist(‘nlsim’) ,
exist(‘nlsim_m’) , exist(‘nlsim2’) ,
exist(‘nlsim_m2’) , or exist(‘propgateo’) ,
and the answer is neither 2 (the name represents an
M-file) nor 3 (the name represents a MEX-file), one of
the following error messages will appear in the
MATLAB window and program execution will stop.

NLINITCL : failure setting ismex

NLINITOL : failure setting ismex

Solution: Make sure that none of these variables are
being used in the wrong way (such as for a compiled
SIMULINK function) and that the M-files (and
MEX-files, if they exist) of these names are on the
matlabpath .

NASA Langley Research Center
Hampton, VA 23681-2199
August 27, 1997
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Appendix A

User-Supplied Routines for Earth Observing System EOS-AM-1 Example

The following listings are examples of the routines to be supplied to PLATSIM by the user. These examples are
based on the Earth Observing System EOS-AM-1 spacecraft and are distributed with PLATSIM. The user may want to
use these examples as templates for writing the user-supplied routines for the platform that the user wishes to analyze.

mkdamp.m

function [d]=mkdamp(omega)
%
% function [d]=mkdamp(omega)
%
% purpose: to assign modal damping ratios
%
% input variables:
%
% omega : vector containing the natural frequencies
%
% output variables:
%
% d : vector of damping ratios
%
%

% Author: Peiman G. Maghami
%         Spacecraft Controls Branch
%         NASA Langley Research Center
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% damping schedule for the EOS-AM-1 Spacecraft
%
% damping ratio = 0.2% for modes with frequency less than 15Hz
% damping ratio = 0.25% for modes with frequency greater than 15Hz
%                 but less than 50Hz
% damping ratio = 0.3% for modes with frequency greater than 50Hz
for i=1:max(size(omega))
  if omega(i)< 30.0*pi
    d(i)=0.002;
  elseif omega(i)>=30.0*pi&omega(i)<100.0*pi
    d(i)=0.0025;
  else
    d(i)=0.003;
  end
end
d=d’;

instdata.m

  function [act,mout,pout,instr]=instdata
%
% function [act,mout,pout,instr]=instdata
%
% purpose: a user-defined routine to provide the grid
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% point numbers, directions distribution/contribution
% factors, and identification numbers for the
% spacecraft instruments. It also provides names for
% the performance outputs.
%
%
% output variables:
%
%
% act    : control input information matrix
% mout   : measurement output information matrix
% pout   : performance output information matrix
% instr  : list of names for performance outputs
%
%
%

% Author: Peiman G. Maghami
%         Spacecraft Controls Branch
%         NASA Langley Research Center
%         August, 1993
%
% modified: P. G. Maghami
%           March, 1994
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The following parameters are associated with
% EOS-AM-1 Spacecraft.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% define the spacecraft control input information
% matrix (the ACS input at the RWA)
%
act=[155003,155003,155003;
     4,     5,     6;
     1,     2,     3;
     1.0,   1.0,   1.0];
%
% define grid points for the measurement feedbacks at
% the NAVBASE
%
mout=[111091,111091,111091,111091,111091,111091;
      4,     4,     5,     5,     6,     6;
      1,     2,     3,     4,     5,     6;
      1.0,   1.0,   1.0,   1.0,   1.0,   1.0;
      0,     1,     0,     1,     0,     1];
%
% define grid points for performance outputs
% [NAVBASE, CERES1, CERES2, MISR, MODIS-N, MOPITT,
% SWIR, TIR, VNIR]
%
pout=[111091,111091,111091,350420,350420,350420,...
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351420,351420,351420,333498,333498,333498,361203,...
361203,361203,396400,396400,396400,329722,329722,...
329722,326989,326989,326989,325647,325647,325647;
4,5,6,4,5,6,4,5,6,4,5,6,4,5,6,4,5,6,4,5,6,4,5,6,...
4,5,6;
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,...
20,21,22,23,24,25,26,27;
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...
1,1,1;
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...
0,0,0];
%
% convert the performance output units from rads
% to arcsec
%
pout(4,:)=(180.0*3600.0/pi)*pout(4,:);
%
%
% define the performance output names, display
% and unit labels
%
instr=str2mat(‘1|NAVBASE Roll|NAVBASE|arcsec’,’2|NAVBASE Pitch|NAVBASE|
arcsec’);
instr=str2mat(instr,’3|NAVBASE Yaw|NAVBASE|arcsec’);
instr=str2mat(instr,’4|CERES1 Roll|CERES|arcsec’,’5|CERES1 Pitch|CERES|
arcsec’);
instr=str2mat(instr,’6|CERES1 Yaw|CERES|arcsec’);
instr=str2mat(instr,’7|CERES2 Roll|CERES|arcsec’,’8|CERES2 Pitch|CERES|
arcsec’);
instr=str2mat(instr,’9|CERES2 Yaw|CERES|arcsec’);
instr=str2mat(instr,’10|MISR Roll|MISR|arcsec’,’11|MISR Pitch|MISR|arcsec’);
instr=str2mat(instr,’12|MISR Yaw|MISR|arcsec’);
instr=str2mat(instr,’13|MODIS Roll|MODIS|arcsec’,’14|MODIS Pitch|MODIS|
arcsec’);
instr=str2mat(instr,’15|MODIS Yaw|MODIS|arcsec’);
instr=str2mat(instr,’16|MOPITT Roll|MOPITT|arcsec’,’17|MOPITT
Pitch|MOPITT|arcsec’);
instr=str2mat(instr,’18|MOPITT Yaw|MOPITT|arcsec’);
instr=str2mat(instr,’19|SWIR Roll|ASTER|arcsec’,’20|SWIR Pitch|ASTER|
arcsec’);
instr=str2mat(instr,’21|SWIR Yaw|ASTER|arcsec’);
instr=str2mat(instr,’22|TIR Roll|ASTER|arcsec’,’23|TIR Pitch|ASTER|arcsec’);
instr=str2mat(instr,’24|TIR Yaw|ASTER|arcsec’);
instr=str2mat(instr,’25|VNIR Roll|ASTER|arcsec’,’26|VNIR Pitch|ASTER|
arcsec’);
instr=str2mat(instr,’27|VNIR Yaw|ASTER|arcsec’);
%

distdata.m

function [dist,w,dt,cnames,dnames,instdat,...
          mapping]=distdata(casenum,tdflag)
%function [dist,w,dt,cnames,dnames,instdat,...
           mapping]=distdata(casenum,tdflag)
%
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% Author: Sean P. Kenny
%         NASA Langley Research Center
%         Spacecraft Controls Branch
% Created:  2/14/94
%
%------------------------------------------------
if nargin == 0
  casenum=0;
  tdflag=’yes’;      % This will not affect the
                     % analysis, just the amount
                     % of data generated (time spent)
                     % here.
elseif nargin == 1
  tdflag=’yes’;
end
%
%
%
% Individual Instrument Disturbances:
%
% Defines labels for pull-down menus, also labels
% for jitter tables, and time history plots.
%
% Note:
%
% A GUI menu item may be disabled by including a
% preceding asterisk in the string variable, e.g.,
% s23=’* High Gain Antenna’, will be displayed,
% but cannot be selected with the mouse. This feature
% pertains to GUI mode ONLY ! Batch mode will allow
% the selection of all entries.
%
%
%
s1=’TIR repoint’;
s2=’TIR calibrate’;
s3=’TIR scan’;
s4=’TIR chopper’;
s5=’TIR cryocooler LDE’;
s6=’MODIS scan mirror’;
s7=’MODIS static imbalance’;
s8=’MODIS dynamic imbalance’;
s9=’MOPITT mirror scan’;
s10=’MOPITT cryocooler LDE’;
s11=’MOPITT pressure modulated cells’;
s12=’Reaction Wheel Assembly case 1’;
s13=’* Reaction Wheel Assembly case 2’;
s14=’Solar Array Drive’;
s15=’Solar Array Thermal Snap’;
%
%
%
% Combine individual cases into a matrix form using
% function “str2mat”.
% Note “str2mat” allows a maximum of 10 arguments per
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% call, therefore, multiple calls may be required.
% Each individual case defined above represents a
% row entry within the “dnames” string matrix.
%
dnames=str2mat(s1,s2,s3,s4,s5,s6,s7,s8,s9,s10);
dnames=str2mat(dnames,s11,s12,s13,s14,s15);
%
%
%--------------------------------------------------
%
%
%            Disturbance Category Labels
%  (labels for top-level menu items on pop-up figure)
%
ss1=’ASTER-TIR’;
ss2=’MODIS’;
ss3=’MOPITT’;
ss4=’Misc. Disturbances’;
%
% Combine Category Labels into a string matrix:
%
cnames=str2mat(ss1,ss2,ss3,ss4);
%
%
%
% Setup mapping between category labels and
% disturbance case numbers.
%
% instdat[i] corresponds to the ith row in “cnames”,
% e.g., the vector instdat5 contains all case numbers
% that are associated with the fifth row in “cnames”.
% The elements of the instdat[i] vector are the row
% indices within the “dnames” string matrix. For
% example, if the 4th, 5th, and 10th row entries in
% “dnames” correspond to the category in the 5th row
% of “cnames”, then instdat5=[4,5,10].
%
% The vector variable “mapping” is a pointer that
% defines the number of cases in each category, e.g.,
% mapping(1)=8; implies that there are eight
% disturbance cases associated with the first
% category.
%
%
  mapping=[];
instdat1=[1,2,3,4,5];
  linst=length(instdat1);
  mapping=[mapping,linst];
instdat2=[6,7,8];
  linst=length(instdat2);
  mapping=[mapping,linst];
instdat3=[9,10,11];
  linst=length(instdat3);
  mapping=[mapping,linst];
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instdat4=[12,13,14,15];
  linst=length(instdat4);
  mapping=[mapping,linst];
%
instdat=[instdat1,instdat2,instdat3,instdat4];
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Based upon menu selection, create the proper
% disturbance input vector(s).
%
%
% TIR Mirror Repointing
%
if (casenum == 1)
% 326990 ==> scanner
igrid=[326990];
idir=[4];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
% get torque/force profiles for only time-domain
if strcmp(tdflag(1),’y’)
  [dt,torque] = tir1;
  w(:,1)=torque’;
end
%
% TIR Mirror Calibration
%
elseif (casenum == 2)
% 326944 ==> chopper
igrid=[326990];
idir=[4];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,torque] = tir2;
  w(:,1)=torque’;
end
%
% TIR Scanner
%
elseif (casenum == 3)
% 326990 ==> scanner
igrid=[326990 326990 326990 326990 326990 326990];
idir=[1 2 3 4 5 6];
inum=[1:6];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,torque] = tirscan1;
  w(:,1)=torque’;
  [dt,torque] = tirscan2;
  w(:,2)=torque’;
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  [dt,torque] = tirscan3;
  w(:,3)=torque’;
  [dt,torque] = tirscan4;
  w(:,4)=torque’;
  [dt,torque] = tirscan5;
  w(:,5)=torque’;
  [dt,torque] = tirscan6;
  w(:,6)=torque’;
end
%
% TIR Chopper
%
elseif (casenum == 4)
% 326944 ==> chopper
igrid=[326944 326944];
idir=[1 2];
inum=[1:2];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,torque] = tirchop1;
  w(:,1)=torque’;
  [dt,torque] = tirchop2;
  w(:,2)=torque’;
end
%
% TIR Compressor/Displacer "Low Distortion Electronics" (LDE)
%
elseif (casenum == 5)
% 326992 ==> compressor
% 326993 ==> displacer
igrid=[326992 326992 326992 326992 326992 326993 326993 326993 326993 326993];
idir=[1 2 4 5 6 2 1 4 5 6];
inum=[1:10];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,torque] = tirca1;
  w(:,1)=torque’;
  [dt,torque] = tirca2;
  w(:,2)=torque’;
  [dt,torque] = tirca3;
  w(:,3)=torque’;
  [dt,torque] = tirca4;
  w(:,4)=torque’;
  [dt,torque] = tirca5;
  w(:,5)=torque’;
  [dt,torque] = tirda1;
  w(:,6)=torque’;
  [dt,torque] = tirda2;
  w(:,7)=torque’;
  [dt,torque] = tirda3;
  w(:,8)=torque’;
  [dt,torque] = tirda4;
  w(:,9)=torque’;
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  [dt,torque] = tirda5;
  w(:,10)=torque’;
end
%
%
% MODIS scan mirror
%
elseif (casenum == 6)
% 3601 ==> averaged interface
% 361203 ==> scan mirror center
% 361342 ==> scan mirror motor/encoder
% 355349 ==> solar door 8/12/93 spk
igrid=[361342];
idir=[4];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,torque] = modis1;
  w(:,1)=torque’;
end
%
% MODIS static imbalance
%
elseif (casenum == 7)
% 361342 ==> scan mirror motor/encoder
igrid=[361342 361342];
idir=[2 3];
inum=[1:2];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,for1,for2] = modis2;
  w(:,1)=for1’;
  w(:,2)=for2’;
end
%
% MODIS dynamic imbalance
%
elseif (casenum == 8)
% 361342 ==> scan mirror motor/encoder
igrid=[361342 361342];
idir=[5 6];
inum=[1:2];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,tor1,tor2] = modis3;
  w(:,1)=tor1’;
  w(:,2)=tor2’;
end
%
% MOPITT mirror scan
%
elseif (casenum == 9)
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% 396400 ==> scan motor 1
% 396403 ==> scan motor 2
% 3608 ==> Avg. interface
igrid=[396400];
idir=[4];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,torque] = mopitt;
  w(:,1)=torque’;
end
%
% MOPITT Compressor/Displacer “Low Distortion
% Electronics” (LDE)
%
elseif (casenum == 10)
% 396416 ==> compressor
% 396417 ==> displacer
igrid=[396416 396416 396416 396417 396417 396417];
idir=[2 1 5 2 1 5];
inum=[1:6];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,torque] = mopittc1;
  w(:,1)=torque’;
  [dt,torque] = mopittc2;
  w(:,2)=torque’;
  [dt,torque] = mopittc3;
  w(:,3)=torque’;
  [dt,torque] = mopittd1;
  w(:,4)=torque’;
  [dt,torque] = mopittd2;
  w(:,5)=torque’;
  [dt,torque] = mopittd3;
  w(:,6)=torque’;
end
%
% MOPITT pressure modulated cell (PMC)
%
elseif (casenum == 11)
% 396412 ==> PMC #1
% 396413 ==> PMC #2
igrid=[396412 396413];
idir=[1 1];
inum=[1:2];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,pmc1,pmc2] = mopmc;
  w(:,1)=pmc1’;
  w(:,2)=pmc2’;
end
%
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%
% Reaction Wheel Assembly (RWA) Imbalance: Case 1
%
% ** static imbalance in wheel #1 **
%
elseif (casenum == 12)
% 50600 ==> RWA averaged interface
% 155003 ==> RWA 1 (farthest from C.G.)
igrid=[155003 155003 155003];
idir=[1 2 3];
inum=[1:3];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,rwax,rway,rwaz] = rwa1;
  w(:,1)=rwax’;
  w(:,2)=rway’;
  w(:,3)=rwaz’;
end
%
% Reaction Wheel Assembly (RWA) Imbalance: Case 2
%
elseif (casenum == 13)
igrid=[155003 155003 155003];
idir=[1 2 3];
inum=[1:3];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
[dt,rwax,rway,rwaz] = rwa2;
w(:,1)=rwax’;
w(:,2)=rway’;
w(:,3)=rwaz’;
%
% Solar Array Harmonic Drive
%
elseif (casenum == 14)
% 69090 ==> solar array drive (SAD)
igrid=[69090];
idir=[5];
inum=[1];
ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,torque] = sadhd;
  w(:,1)=torque’;
end
%
% Solar Array Thermal Snap
%
elseif (casenum == 15)
% 69090 ==> SAD
% 60024 ==> SA
igrid=[69090 60024 60024];
idir=[4 1 3];
inum=[1:3];
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ifac=ones(size(inum));
dist=[igrid;idir;inum;ifac];
if strcmp(tdflag(1),’y’)
  [dt,torque] = sa1;
  w(:,1)=torque’;
  [dt,torque] = sa2;
  w(:,2)=torque’;
  [dt,torque] = sa3;
  w(:,3)=torque’;
end
%
end
%
% End distdata.m

formscs.m

  function [aacs,bacs,cacs,dacs]=formscs

%
% function [aacs,bacs,cacs,dacs]=formscs
%
% Purpose: To form the continuous-time spacecraft
% control system (SCS) for the space platform
%
%          Currently, this function forms the attitude
%          control system for the EOS-AM-1 Spacecraft.
%
%
% output variables:
%
% aacs  : the SCS state matrix (continuous)
% bacs  : the SCS input influence matrix (continuous)
% cacs  : the SCS output influence matrix
%

% Author: P. G. Maghami
%         Spacecraft Controls Branch
%         NASA Langley Research Center
%         December, 1992
%
% Modified: March, 1994
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

third-order Butterworth filter
kf=0.25005;
af=1.0;
bf=1.2600;
cf=0.7938;
df=kf;
numf=kf;denf=[af,bf,cf,df];
% wide-band notch filter
an=0.52335;
bn=0.19678;
cn=1.0;
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kn=0.57408;
numn=[an,bn,cn];denn=[an,kn,cn];
% rate gyro
kg=1.0;
wg=12.5664;
zg=0.7071;
numg=[kg*wg*wg];deng=[1.0,2.0*zg*wg,wg*wg];
%zero order hold
taw=0.512;
%numh=taw;denh=[0.125*taw*taw,taw,1.00];
numh=1.00;denh=[0.125*taw*taw,taw,1.00];
%delay
numd=[0.125*taw*taw,taw,1.00];
dend=[0.125*taw*taw,taw,1.00];
%
krp=[4284.6;6696.4;8322.5];
kri=[30.604;40.761;105.68];
%
% rate loop compensator-roll
numrr=[krp(1),kri(1)];denrr=[1.00,0.00];
%
% rate loop compensator-pitch
numrp=[krp(2),kri(2)];denrp=[1.00,0.00];
%
% rate loop compensator-yaw
numry=[krp(3),kri(3)];denry=[1.00,0.00];
%
kp=[0.051604;0.049064;0.047159];
ki=[1.5199e-4;1.6984e-4;3.3011e-4];
%
% position loop compensator-roll
numpr=[kp(1),ki(1)];denpr=[1.00,0.00];
%
% position loop compensator-pitch
numpp=[kp(2),ki(2)];denpp=[1.00,0.00];
%
% position loop compensator-yaw
numpy=[kp(3),ki(3)];denpy=[1.00,0.00];
%
% rate loop total compensation
%
%
% transform (numg,deng) to state-space
%
[a1,b1,c1,d1]=tf2ss(numg,deng);
%
%
% transform the position-loop combined TFs to
% state-space
%
[ap1,bp1,cp1,dp1]=tf2ss(numpr,denpr);
[ap2,bp2,cp2,dp2]=tf2ss(numpp,denpp);
[ap3,bp3,cp3,dp3]=tf2ss(numpy,denpy);
%
%
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% combine the position loop and rate loop filters
%
[ac1,bc1,cc1,dc1]=...
               append(ap1,bp1,cp1,dp1,a1,b1,c1,d1);
[ac2,bc2,cc2,dc2]=...
               append(ap2,bp2,cp2,dp2,a1,b1,c1,d1);
[ac3,bc3,cc3,dc3]=...
               append(ap3,bp3,cp3,dp3,a1,b1,c1,d1);
%
cc1=cc1(1,:)+cc1(2,:);dc1=dc1(1,:)+dc1(2,:);
cc2=cc2(1,:)+cc2(2,:);dc2=dc2(1,:)+dc2(2,:);
cc3=cc3(1,:)+cc3(2,:);dc3=dc3(1,:)+dc3(2,:);
%
% combine the butterworth filter and the notch filter
%
[num1,den1]=series(numf,denf,numn,denn);
%
% combine the rate loop compensator in series
% with the notch filter
%
[num31,den31]=series(numrr,denrr,num1,den1);
[num32,den32]=series(numrp,denrp,num1,den1);
[num33,den33]=series(numry,denry,num1,den1);
%
% add the zero order hold in series
%
[num41,den41]=series(num31,den31,numh,denh);
[num42,den42]=series(num32,den32,numh,denh);
[num43,den43]=series(num33,den33,numh,denh);
%
% add the time delay in series
%
[numinr,deninr]=series(num41,den41,numd,dend);
[numinp,deninp]=series(num42,den42,numd,dend);
[numiny,deniny]=series(num43,den43,numd,dend);
%
% transform the rate loop TFs to state-space
%
[ar1,br1,cr1,dr1]=tf2ss(numinr,deninr);
[ar2,br2,cr2,dr2]=tf2ss(numinp,deninp);
[ar3,br3,cr3,dr3]=tf2ss(numiny,deniny);
%
%
% Form the SCS state-space model
%
%
[aacs1,bacs1,cacs1,dacs1]=...
             series(ac1,bc1,cc1,dc1,ar1,br1,cr1,dr1);
[aacs2,bacs2,cacs2,dacs2]=...
             series(ac2,bc2,cc2,dc2,ar2,br2,cr2,dr2);
[aacs3,bacs3,cacs3,dacs3]=...
             series(ac3,bc3,cc3,dc3,ar3,br3,cr3,dr3);
%
[aacs,bacs,cacs,dacs]=append(aacs1,bacs1,...
                 cacs1,dacs1,aacs2,bacs2,cacs2,dacs2);
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[aacs,bacs,cacs,dacs]=append(aacs,bacs,...
                 cacs,dacs,aacs3,bacs3,cacs3,dacs3);
%
% apply the scale factor KW of the reaction wheels
% (units in lb-in/ssc)
%
kw=0.22*12.00;
cacs=cacs*kw;
%
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Appendix B

S-Function Representation of Earth Observing System EOS-AM-1 Attitude Control System

The following listing is an example of an S-function representation of an attitude control system. This example is
based on the Earth Observing System EOS-AM-1 spacecraft and is distributed with PLATSIM. The user may want to
use this example as a template for writing the S-function routines for the spacecraft that the user wishes to analyze.

stiction.m

function [yout]=stiction(x,u,t,flag)
%
% Purpose: A MATLAB S-function that defines the
% EOS-AM-1 attitude control system with the reaction
% wheel models included. The reaction wheel friction
% nonlinearities and stiction are modeled. However,
% an uncontrolled model of the wheel is used (no
% wheel speed controller).
%
% Inputs: Standard MATLAB S-function inputs.
%
% Outputs: Standard MATLAB S-function outputs.
%
% Author: Peiman G. Maghami
%         Guidance and Control Branch
%         NASA Langley Research Center
%         Hampton, VA 23681-0001
%
% Created: September, 1995
% Modified: March, 1996
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global PLAT_ac PLAT_bc PLAT_cc PLAT_nc
%
if flag==0
%
% if flag=0, the number of the continuous states,
% discrete states, outputs,and inputs are required.
%
 sizes=[51,0,6,6,0,0];
end
%
%
% call “formscs.m” the first time to generate the
% ACS system matrices
%
% The first “nc” states correspond to the states of
% the linear ACS controller.
% The states “nc+1” to “nc+3” represent the reaction
% wheel speeds.
%
if exist(‘PLAT_ac’)~=1
[PLAT_ac,PLAT_bc,PLAT_cc,PLAT_dc]=formscs;
nc=size(PLAT_ac,1);
end
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%
% compute the required torques
%
uc=PLAT_cc*x(1:nc);
%
% compute the reaction wheel drag torques
%
ws=x(nc+1:nc+3);
tdrag=0.0232215-0.0209812*exp(-0.0035787*abs(ws));
izws=find(x(nc+1:nc+3)==0);
inzws=find(x(nc+1:nc+3)~=0);
tdrag(inzws)=12*sign(ws(inzws)).*tdrag(inzws);
tdrag(izws)=12*sign(uc(izws)).*tdrag(izws);
%
if flag==1
%
% if flag=1, the derivatives of the continuous-time
% variables are required.
%
yout=zeros(size(x));
%
% compute controller state derivatives
%
ydot=PLAT_ac*x(1:nc)+PLAT_bc*u;
%
% compute reaction wheel accelerations
%
 wdot=(1/(12*0.103))*(uc-tdrag);
%
 for i=1:3
%
% if a wheel is under stiction, zero out the wheel
% accelerations
%
  if abs(uc(i))<=12*(0.0232215-0.0209812) & abs(x(nc+i))<1.00e-12;
    wdot(i)=0;
  end
 end
%
yout=[ydot;wdot];
%
elseif flag==2
%
% if flag=2, the system outputs are required.
%
% The first three outputs are the reaction torques
% and the next three outputs are the requested
% torques.
%
yout=zeros(6,1);
%
% compute reaction torques
%
 for i=1:3
%



59

% if a wheel is under stiction, set the reaction

% torque to zero.

%

  if abs(uc(i))<=12*(0.0232215-0.0209812) & abs(x(nc+i))<1.00e-12;

   yout(i)=0;

  else

   yout(i)=(uc(i)-tdrag(i));

  end

 end

%

  yout(4:6)=uc(1:3);

end
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Appendix C

Solution Integrity Checking File

The following listing is an example of solution integrity checking. This file corresponds to the example given in the
Solution Check File on page 10. The user may want to use this example as a template for writing a solution integrity
checking file for the spacecraft that the user wishes to analyze.

solchk.m

  function [hout,z2,u2,isolok]=solchk(z1,u1,z2,u2,h)
%
% function [hout,z2,u2,isolok]=solchk(z1,u1,z2,u2,h)
%
% purpose: Generally, to determine if a user-defined
% solution discontinuity condition has occurred in the
% nonlinear control system during the last
% integration update, and take action as necessary
% to reset the integration step size or to redefine
% the controller states and outputs. This particular
% file is written to handle the discontinuities that
% are brought on due to the reaction wheel stiction
% for the EOS-AM-1 spacecraft.
%
%
% input variables:
%
% z1 : last controller state vector
% u1 : last controller output vector
% z2 : current controller state vector
% u2 : current controller output vector
% h  : integration step size
%
% output variables:
%
% hout   : new integration step size to be tried by
%          the integration algorithm.
% z2     : updated current controller state vector
% u2     : updated current controller output vector
% isolok : an integer scalar. If isolok=1, the
%          current solution is accepted, otherwise, the
%          solution is rejected and the integration is
%          to be performed again with hout.
%
%

% Author: Peiman G. Maghami
%         Guidance and Control Branch
%         NASA Langley Research Center
%
% Created : March, 1995
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global PLAT_flag
%
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% if PLAT_flag(i)=0, wheel no. “i” is in non-stiction
% condition with potential for entering stiction
% condition
% if PLAT_flag(i)=1, wheel no. “i” is in stiction
% condition with potential for leaving stiction
% condition
%
% nwheels : number of reaction wheels
%
nwheels=3;
%
% nc : the position of the wheel speed variables in
% the nonlinear controller state vector
nc=[49,50,51];
%
% nrt : the position of the reaction torque levels of
% the wheels in the nonlinear controller output
% vector
%
nrt=[1,2,3];
%
% nat : the position of the applied torque levels to
% the wheels in the nonlinear controller output
% vector
%
nat=[4,5,6];
%
% define the stiction torque
%
tstic=12*(0.0232215-0.0209812);
%
% define minimum step for the cross-over from one
% condition to the next
%
hmin=1.00e-5*h;
%
% initialize the wheels flags. If the initial wheel
% speed is zero, assume stiction condition, and set
PLAT_flag(i)=1; otherwise, set PLAT_flag(i)=0.
%
if exist(‘PLAT_flag’)~=1
 for i=1:nwheel
  if z1(nc(i))==0
   PLAT_flag(i)=1;
  else
   PLAT_flag(i)=0;
  end
 end
end
%
% loop around the number of reaction wheels
%
for i=1:nwheel
   hout(i)=h;
%
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   if PLAT_flag(i)==0
%
% check wheel speed zero crossing
%
      if (z1(nc(i))*z2(nc(i)))<=0
%
% compute estimated location of the wheel speed zero
% crossing
%
         if (z2(nc(i))-z1(nc(i)))~=0
            wc=-z1(nc(i))*h/(z2(nc(i))-z1(nc(i)));
         else
            wc=h;
         end
%
% compute estimated requested torque @ wc
%
         uc=u1(nt(i))+((u2(nt(i))-u1(nt(i)))/h)*wc;
%
% if estimated requested torque @ wc is less than the
% stiction torque, stiction has occurred.
%
         if abs(uc)<tstic
%
% if stiction has occurred at the end of the time
% interval, set the appropriate flag and accept the
% solution
%
            if wc==h
               PLAT_flag(i)=1;
               isoloki(i)=1;
%
% if the stiction condition is estimated to have
% occurred at a time between hmin and h-hmin, reject
% the solution, and retry the last step with step
% size set at 0.9*wc.
%
            elseif wc>=hmin & wc<(h-hmin)
               isoloki(i)=0;
               hout(i)=wc*0.9;
%
% if the stiction condition is estimated to have
% occurred at a time between 0
% and hmin, assume the cross-over from non-stiction
% to stiction has taken place;
% accept the solution, and zero out the wheel speed
% and reaction torque
%
            elseif wc<hmin & wc>0
               PLAT_flag(i)=1;
               isoloki(i)=1;
               hout(i)=wc;
               z2=z1;
               z2(nc(i))=0;
               u2=u1;
               u2(nrt(i))=0;
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%
% if the stiction condition is estimated to have
% occurred at a time between h-hmin and h, assume
% the cross-over from non-stiction to stiction has
% taken place; accept the solution, and zero out the
% wheel speed and reaction torque
%
            elseif wc>=h-hmin
               PLAT_flag(i)=1;
               isoloki(i)=1;
               z2(nc(i))=0;
               u2(nrt(i))=0;
            end
         else
            isoloki(i)=1;
         end
      else
         isoloki(i)=1;
      end
 %
   elseif PLAT_flag(i)==1
%
% check the requested torque levels
%
      if abs(u2(nat(i)))>=tstic
%
% compute estimated location of the requested torque
% crossing the stiction torque
%
         if (u2(nat(i))-u1(nat(i)))~=0
            tc=(sign(u2(nat(i)))*tstic-u1(nat(i)))...
               *h/(u2(nat(i))-u1(nat(i)));
         else
            tc=h;
         end
%
% if non-stiction condition has occurred at the end
% of the time interval, set the appropriate flag and
% accept the solution
%
         if tc==h
            PLAT_flag(i)=0;
            isoloki(i)=1;
%
% if the non-stiction condition is estimated to have
% occurred at a time between hmin and h-hmin, reject
% the solution, and retry the last step with step
% size set at 0.9*tc.
%
         elseif tc>=hmin & tc<(h-hmin)
            isoloki(i)=0;
            hout(i)=tc*0.9;
%
% if the non-stiction condition is estimated to have
% occurred at a time between 0 and hmin, assume the
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% cross-over from stiction to non-stiction has taken
% place; accept the solution, and zero out the wheel
% speed and reaction torque, and set the applied
% torque to tstic
%
         elseif tc<hmin & tc>0
            PLAT_flag(i)=0;
            isoloki(i)=1;
            hout(i)=tc;
            z2=z1;
            z2(nc(i))=0;
            u2=u1;
            u2(nrt(i))=0;
            u2(nat(i))=sign(u1(nat(i)))*tstic;
%
% if the non-stiction condition is estimated to have
% occurred at a time between h-hmin and h, assume the
% cross-over from stiction to non-stiction has taken
% place; accept the solution, and zero out the wheel
% speed and reaction torque, and set the applied
% torque to tstic
%
         elseif tc>=h-hmin
            PLAT_flag(i)=0;
            isoloki(i)=1;
            z2(nc(i))=0;
            u2(nrt(i))=0;
            u2(nat(i))=sign(u1(nat(i)))*tstic;
         end
      else
         isoloki(i)=1;
      end
%
% end if-loop on PLAT_flag
%
   end
%
% end loop on i
%
end
%
% Determine the new step size to be taken by the
% integration. If no changes in the condition of any
% of the wheels are observed, e.g., any wheel that
% was in stiction remains in stiction, or any wheel
% that was not in stiction condition remain outside
% the stiction region, the solution is accepted
% (isolok is set to 1) and the new step size is the
% same as the old one. Otherwise, the solution is
% rejected (isolok is set to 0), and the recommended
% new step size is set to the minimum of the step
% sizes for the each of three wheels.
%
hout=min(h,min(hout));
isolok=min(isoloki);
%
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Appendix D

Time Domain Output and Frequency Domain Output for Earth Observing System EOS-AM-1
Example

Time Domain Output for EOS-AM-1

As an example, suppose that PLATSIM runs using the default values of all execution time parameters and the exam-
ple data distributed with the PLATSIM software, which is based on the EOS-AM-1 spacecraft. Suppose further that the
disturbance scenario selected is “MODIS static imbalance”; then the following files are generated by PLATSIM:

The reduced time histories for the EOS-AM-1 instruments, namely, CERES1, CERES2, MISR, MODIS, MOPITT,
NAVBASE, SWIR, TIR, and VNIR, are provided in an encapsulated PostScript form in the corresponding files with
extension “.eps” for roll, pitch, and yaw axes. For example, the fileCERES1_Roll_1_time.eps  provides the roll
time history for the CERES1 instrument due to the first MODIS static imbalance disturbance element (vector), and
VNIR_Yaw_2_time.eps provides the yaw time history for VNIR instrument due to the second MODIS static
imbalance disturbance element (vector).

MODIS_static_imbalance_1_time.mat MODIS_static_imbalance_2_time.mat

MODIS_static_imbalance_time.mat

CERES1_Pitch_1_time.eps
CERES1_Pitch_2_time.eps
CERES1_Roll_1_time.eps
CERES1_Roll_2_time.eps
CERES1_Yaw_1_time.eps
CERES1_Yaw_2_time.eps
CERES2_Pitch_1_time.eps
CERES2_Pitch_2_time.eps
CERES2_Roll_1_time.eps
CERES2_Roll_2_time.eps
CERES2_Yaw_1_time.eps
CERES2_Yaw_2_time.eps

MISR_Pitch_1_time.eps
MISR_Pitch_2_time.eps
MISR_Roll_1_time.eps
MISR_Roll_2_time.eps
MISR_Yaw_1_time.eps
MISR_Yaw_2_time.eps

MODIS_Pitch_1_time.eps
MODIS_Pitch_2_time.eps
MODIS_Roll_1_time.eps
MODIS_Roll_2_time.eps
MODIS_Yaw_1_time.eps
MODIS_Yaw_2_time.eps

MOPITT_Pitch_1_time.eps
MOPITT_Pitch_2_time.eps
MOPITT_Roll_1_time.eps
MOPITT_Roll_2_time.eps
MOPITT_Yaw_1_time.eps
MOPITT_Yaw_2_time.eps

NAVBASE_Pitch_1_time.eps
NAVBASE_Pitch_2_time.eps
NAVBASE_Roll_1_time.eps
NAVBASE_Roll_2_time.eps
NAVBASE_Yaw_1_time.eps
NAVBASE_Yaw_2_time.eps

SWIR_Pitch_1_time.eps
SWIR_Pitch_2_time.eps
SWIR_Roll_1_time.eps
SWIR_Roll_2_time.eps
SWIR_Yaw_1_time.eps
SWIR_Yaw_2_time.eps

TIR_Pitch_1_time.eps
TIR_Pitch_2_time.eps
TIR_Roll_1_time.eps
TIR_Roll_2_time.eps
TIR_Yaw_1_time.eps
TIR_Yaw_2_time.eps

VNIR_Pitch_1_time.eps
VNIR_Pitch_2_time.eps
VNIR_Roll_1_time.eps
VNIR_Roll_2_time.eps
VNIR_Yaw_1_time.eps
VNIR_Yaw_2_time.eps

MODIS_static_imbalance_1_jitr.out
MODIS_static_imbalance_2_jitr.out
MODIS_static_imbalance_jitr.out

MODIS_static_imbalance_1_jitr.ps
MODIS_static_imbalance_2_jitr.ps
MODIS_static_imbalance_jitr.ps
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A typical time history output as encapsulated  in fileMISR_Roll_2_time.eps is  shown in figure D1 . This
time history was generated using the 703-mode model of the EOS-AM-1 spacecraft being distributed with the
PLATSIM software.

Files MODIS_static_imbalance_1_time.mat  and MODIS_static_imbalance_2_time.mat  are
MATLAB binary files which include the reduced time history data for all EOS-AM-1 instruments and the corresponding
jitter values (in variablesJITTER1  andJITTER2 ) for the first and the second MODIS static imbalance disturbance
elements (vectors), respectively. FileMODIS_static_imbalance_time .mat  is a MATLAB binary file which has
the overall jitter values (in variableJITTER ). Files MODIS_static_imbalance_1_jitr .out  and
MODIS_static_imbalance_2_jitr .out  are ASCII  files  which  contain  the jitter values,  in a tabular form,
for the first and the second MODIS static imbalance disturbance elements (vectors), respectively. File
MODIS_static_imbalance_jitr .out  is  an ASCII  file containing the total jitter  values in  a tabular
form, obtained  through the direct summation of jitter values in filesMODIS_static_imbalance_1_time .mat
and MODIS_static_imbalance_2_time .mat . The jitter data written to file
MODIS_static_imbalance_1_jitr .out  looks as follows:

Figure D1.  Example of time history plot. Time response for disturbance sequence MODIS static imbalance (2); 29 Apr 1994.
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Disturbance Source: MODIS static imbalance(1)

 Window 1.00    1.80    9.00   55.00  420.00  480.00 1000.00

NAVBASE Roll 3.19    3.82    7.55   12.50   12.50   12.50   12.50
NAVBASE Pitch 0.42    0.55    1.40     2.20     2.20     2.20     2.20
NAVBASE Yaw 3.97    4.96   14.19   26.88   26.88   26.88   26.88
CERES1 Roll 3.19    3.82    7.55   12.50   12.50   12.50   12.50
CERES1 Pitch 0.42    0.55    1.40     2.20     2.20     2.20     2.20
CERES1 Yaw 3.97    4.96   14.19   26.88   26.88   26.88   26.88
CERES2 Roll 3.19    3.82    7.55   12.50   12.50   12.50   12.50
CERES2 Pitch 0.42    0.55    1.40     2.20     2.20     2.20     2.20
CERES2 Yaw 3.97    4.96   14.19   26.88   26.88   26.88   26.88
MISR Roll 3.19    3.82    7.55   12.50   12.50   12.50   12.50
MISR Pitch 0.42    0.55    1.40     2.20     2.20     2.20     2.20
MISR Yaw 3.97    4.96   14.19   26.88   26.88   26.88   26.88
MODIS Roll 3.19    3.82    7.55   12.50   12.50   12.50   12.50
MODIS Pitch 0.42    0.55    1.40     2.20     2.20     2.20     2.20
MODIS Yaw 3.97    4.96   14.19   26.88   26.88   26.88   26.88
MOPITT Roll 3.19    3.82    7.55   12.50   12.50   12.50   12.50
MOPITT Pitch 0.42    0.55    1.40     2.20     2.20     2.20     2.20
MOPITT Yaw 3.97    4.96   14.19   26.88   26.88   26.88   26.88
SWIR Roll 3.19    3.82    7.55   12.50   12.50   12.50   12.50
SWIR Pitch 0.42    0.55    1.40     2.20     2.20     2.20     2.20
SWIR Yaw 3.97    4.96   14.19   26.88   26.88   26.88   26.88
TIR Roll 3.19    3.82    7.55   12.50   12.50   12.50   12.50
TIR Pitch 0.42    0.55    1.40     2.20     2.20     2.20     2.20
TIR Yaw 3.97    4.96   14.19   26.88   26.88   26.88   26.88
VNIR Roll 3.19    3.82    7.55   12.50   12.50   12.50   12.50
VNIR Pitch 0.42    0.55    1.40     2.20     2.20     2.20     2.20
VNIR Yaw 3.97    4.96   14.19   26.88   26.88   26.88   26.88
 RUN DATE: 29-Apr-94

Files MODIS_static_imbalance_1_jitr .ps , MODIS_static_imbalance_2_jitr .ps , and
MODIS_static_imbalance_jitr .ps  are equivalent to their “.out ” counterpart, except that they are in
PostScript form.
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Frequency Domain Output for EOS-AM-1

As an example, suppose that PLATSIM runs using the default values of all execution time parameters, except
tdflag =  ‘n’ (which selects frequency domain analysis). Suppose also that PLATSIM runs using the example data
distributed with the PLATSIM software which is based on the EOS-AM-1 spacecraft. Suppose further that the distur-
bance scenario selected is “MODIS static imbalance”; then the following files are generated by PLATSIM:

The Bode plots for the EOS-AM-1 instruments, namely, CERES1, CERES2, MISR, MODIS, MOPITT,
NAVBASE, SWIR, TIR, and VNIR, are provided in an encapsulated PostScript form in the corresponding files with
extension “.eps ” for roll, pitch, and yaw axes. For example, the fileCERES1_Roll_1_freq .eps  provides the Bode
plot for the roll response of the CERES1 instrument due to the first MODIS static imbalance disturbance element (vec-
tor), andVNIR_Yaw_2_time .eps  provides the Bode plot for the yaw response of the VNIR instrument due to the sec-
ond MODIS static imbalance disturbance element (vector). A Bode plot output would look as in figure D2 on page 71.
This Bode plot was generated by using the 703-mode model being distributed with the PLATSIM software.

File MODIS_static_imbalance_freq .mat  is a MATLAB binary file containing the results of the frequency
domain calculation in the form indicated in “Frequency response matrix” on page 37.

MODIS_static_imbalance_freq.mat

CERES1_Pitch_1_freq.eps
CERES1_Pitch_2_freq.eps
CERES1_Roll_1_freq.eps
CERES1_Roll_2_freq.eps
CERES1_Yaw_1_freq.eps
CERES1_Yaw_2_freq.eps
CERES2_Pitch_1_freq.eps
CERES2_Pitch_2_freq.eps
CERES2_Roll_1_freq.eps
CERES2_Roll_2_freq.eps
CERES2_Yaw_1_freq.eps
CERES2_Yaw_2_freq.eps

MISR_Pitch_1_freq.eps
MISR_Pitch_2_freq.eps
MISR_Roll_1_freq.eps
MISR_Roll_2_freq.eps
MISR_Yaw_1_freq.eps
MISR_Yaw_2_freq.eps

MODIS_Pitch_1_freq.eps
MODIS_Pitch_2_freq.eps
MODIS_Roll_1_freq.eps
MODIS_Roll_2_freq.eps
MODIS_Yaw_1_freq.eps
MODIS_Yaw_2_freq.eps

MOPITT_Pitch_1_freq.eps
MOPITT_Pitch_2_freq.eps
MOPITT_Roll_1_freq.eps
MOPITT_Roll_2_freq.eps
MOPITT_Yaw_1_freq.eps
MOPITT_Yaw_2_freq.eps

NAVBASE_Pitch_1_freq.eps
NAVBASE_Pitch_2_freq.eps
NAVBASE_Roll_1_freq.eps
NAVBASE_Roll_2_freq.eps
NAVBASE_Yaw_1_freq.eps
NAVBASE_Yaw_2_freq.eps

SWIR_Pitch_1_freq.eps
SWIR_Pitch_2_freq.eps
SWIR_Roll_1_freq.eps
SWIR_Roll_2_freq.eps
SWIR_Yaw_1_freq.eps
SWIR_Yaw_2_freq.eps

TIR_Pitch_1_freq.eps
TIR_Pitch_2_freq.eps
TIR_Roll_1_freq.eps
TIR_Roll_2_freq.eps
TIR_Yaw_1_freq.eps
TIR_Yaw_2_freq.eps

VNIR_Pitch_1_freq.eps
VNIR_Pitch_2_freq.eps
VNIR_Roll_1_freq.eps
VNIR_Roll_2_freq.eps
VNIR_Yaw_1_freq.eps
VNIR_Yaw_2_freq.eps
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Figure D2.  Example of Bode plot. Frequency response at MISR roll, arcsec. Disturbance: MODIS static imbalance (2); 29 APR 1994.
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